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Preface

This is the third edition of this text on survival analysis,
originally published in 1996. As in the first and second
editions, each chapter contains a presentation of its topic
in “lecture-book” format together with objectives, an out-
line, key formulae, practice exercises, and a test. The “lec-
ture-book” format has a sequence of illustrations and
formulae in the left column of each page and a script in
the right column. This format allows you to read the script
in conjunction with the illustrations and formulae that
highlight the main points, formulae, or examples being
presented.

This third edition has expanded the second edition by
adding one new chapter, additional sections and clarifica-
tions to several chapters, and a revised computer appendix.

The new chapter is Chapter 10, “Design Issues for
Randomized Trials,” which considers how to compute
sample size when designing a randomized trial involving
time-to-event data.

We have expanded Chapter 1 to clarify the distinction
between random, independent, and noninformative cen-
soring assumptions often made about survival data. We
also added a section in Chapter 1 that introduces the
Counting Process data layout that is discussed in later
chapters (3, 6, and 8).

We added sections in Chapter 2 to describe how to obtain
confidence intervals for the Kaplan-Meier (KM) curve and
the median survival time obtained from a KM curve.

We have expanded Chapter 3 on the Cox Proportional
Hazards (PH) Model by describing the use of age as the
time scale instead of time-on-follow-up as the outcome
variable. We also added a section that clarifies how to
obtain confidence intervals for PH models that contain
product terms that reflect effect modification of exposure
variables of interest.

vii



viii Preface

Suggestions
for Use

We have added sections that describe the derivation of the
(partial) likelihood functions for the stratified Cox (SC) model
in Chapter 5 and the extended Cox model in Chapter 6.

We have expanded Chapter 9 on competing risks to
describe the Fine and Gray model for a subdistribution
hazard that allows for a multivariable analysis involving a
cumulative incidence curve (CIC). We also added a numer-
ical example to illustrate the calculation of a conditional
probability curve (CPC) defined from a CIC.

The Computer Appendix in the second edition of this text
provided step-by-step instructions for using the computer
packages STATA, SAS, and SPSS to carry out the survival
analyses presented in the main text. We expanded this
Appendix to include the free internet-based computer soft-
ware package call R. We have also updated our description
of STATA (version 10.0), SAS (version 9.2), and SPSS
(version PASW 18). The application of these computer
packages to survival data is described in separate self-
contained sections of the Computer Appendix, with the
analysis of the same datasets illustrated in each section.

In addition to the above new material, the original nine
chapters have been modified slightly to correct for errata
in the second edition and to add or modify exercises
provided at the end of some chapters.

The authors’ Web site for this textbook has the following
Web-link: http://www.sph.emory.edu/dklein/surv3.htm.

This Web site includes information on how to order this
second edition from the publisher and a freely download-
able zip-file containing data-files for examples used in the
textbook.

This text was originally intended for self-study, but in the
15 years since the first edition was published, it has also
been effectively used as a text in a standard lecture-type
classroom format. The text may also be used to supplement
material covered in a course or to review previously
learned material in a self-instructional course or self-
planned learning activity. A more individualized learning
program may be particularly suitable to a working profes-
sional who does not have the time to participate in a regu-
larly scheduled course.



Recommended
Preparation

Preface ix

In working with any chapter, the learner is encouraged
first to read the abbreviated outline and the objectives
and then work through the presentation. The reader is
then encouraged to read the detailed outline for a summary
of the presentation, work through the practice exercises,
and, finally, complete the test to check what has been
learned.

The ideal preparation for this text on survival analysis is a
course on quantitative methods in epidemiology and a
course in applied multiple regression. Also, knowledge of
logistic regression, modeling strategies, and maximum-
likelihood techniques is crucial for the material on the
Cox and parametric models described in Chapters 3-9.

Recommended references on these subjects, with sug-
gested chapter readings are:

Kleinbaum D, Kupper L, Nizam A, and Muller K, Applied
Regression Analysis and Other Multivariable Methods,
Fourth Edition, Cengage Publishers, 2007, Chapters 1-16,
22-23.

Kleinbaum D, Kupper L and Morgenstern H, Epidemio-
logic Research: Principles and Quantitative Methods, John
Wiley and Sons, Publishers, New York, 1982, Chapters
20-24.

Kleinbaum D and Klein M, Logistic Regression: A Self-
Learning Text, Third Edition, Springer Publishers,
New York, 2010, Chapters 4-7, 11.

Kleinbaum D, ActivEpi-A CD Rom Electronic Textbook on
Fundamentals of Epidemiology, Springer Publishers,
New York, 2002, Chapters 13-15.

A first course on the principles of epidemiologic research
would be helpful, since all chapters in this text are written
from the perspective of epidemiologic research. In parti-
cular, the reader should be familiar with the basic charac-
teristics of epidemiologic study designs, and should have
some idea of the frequently encountered problem of
controlling for confounding and assessing interaction/
effect modification. The above reference, ActivEpi, pro-
vides a convenient and hopefully enjoyable way to review
epidemiology.
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2 1. Introduction to Survival Analysis

Introduction

Abbreviated
Outline

This introduction to survival analysis gives a descriptive
overview of the data analytic approach called survival
analysis. This approach includes the type of problem
addressed by survival analysis, the outcome variable con-
sidered, the need to take into account “censored data,”
what a survival function and a hazard function represent,
basic data layouts for a survival analysis, the goals of sur-
vival analysis, and some examples of survival analysis.

Because this chapter is primarily descriptive in content, no
prerequisite mathematical, statistical, or epidemiologic
concepts are absolutely necessary. A first course on the
principles of epidemiologic research would be helpful. It
would also be helpful if the reader has had some experi-
ence reading mathematical notation and formulae.

The outline below gives the user a preview of the material
to be covered by the presentation. A detailed outline for
review purposes follows the presentation.

I. What is survival analysis? (pages 4-5)
II. Censored data (pages 5-8)
III. Terminology and notation (pages 9-15)
IV. Goals of survival analysis (page 16)
V. Basic data layout for computer (pages 16-23)

VI. Basic data layout for understanding analysis
(pages 23-28)

VII. Descriptive measures of survival experience
(pages 28-30)

VIII. Example: Extended remission data (pages 30-33)
IX. Multivariable example (pages 33-35)
X. Math models in survival analysis (pages 35-37)
XI. Censoring assumptions (pages 37-43)



Objectives 3

Objectives Upon completing the chapter, the learner should be able to:

1.

Nk N

10.

11.

12.

13.

14.

Recognize or describe the type of problem addressed
by a survival analysis.

Define what is meant by censored data.

Define or recognize right-censored data.

Give three reasons why data may be censored.
Define, recognize, or interpret a survivor function.
Define, recognize, or interpret a hazard function.

Describe the relationship between a survivor function
and a hazard function.

State three goals of a survival analysis.

Identify or recognize the basic data layout for the
computer; in particular, put a given set of survival
data into this layout.

Identify or recognize the basic data layout, or
components thereof, for understanding modeling
theory; in particular, put a given set of survival data
into this layout.

Interpret or compare examples of survivor curves or
hazard functions.

Given a problem situation, state the goal of a survival
analysis in terms of describing how explanatory
variables relate to survival time.

Compute or interpret average survival and/or average
hazard measures from a set of survival data.

Define or interpret the hazard ratio defined from
comparing two groups of survival data.



4 1. Introduction to Survival Analysis

Presentation

e the problem

® goals

¢ terminology and
notation

e data layout

® examples

This presentation gives a general introduction
to survival analysis, a popular data analysis
approach for certain kinds of epidemiologic
and other data. Here we focus on the problem
addressed by survival analysis, the goals of a
survival analysis, key notation and terminol-
ogy, the basic data layout, and some examples.

I. What Is Survival
Analysis?

Outcome variable: Time until an
event occurs

Start follow-up TIME Event

Event: death
disease
relapse
recovery

Assume 1 event

Recurrent event

> 1 event or
Competing risk

Time = survival time

Event = failure

We begin by describing the type of analytic
problem addressed by survival analysis. Gener-
ally, survival analysis is a collection of statisti-
cal procedures for data analysis for which the
outcome variable of interest is time until an
event occurs.

By time, we mean years, months, weeks, or
days from the beginning of follow-up of an
individual until an event occurs; alternatively,
time can refer to the age of an individual when
an event occurs.

By event, we mean death, disease incidence,
relapse from remission, recovery (e.g., return to
work) or any designated experience of interest
that may happen to an individual.

Although more than one event may be consid-
ered in the same analysis, we will assume that
only one event is of designated interest. When
more than one event is considered (e.g., death
from any of several causes), the statistical prob-
lem can be characterized as either a recurrent
event or a competing risk problem, which are
discussed in Chaps. 8 and 9, respectively.

In a survival analysis, we usually refer to the
time variable as survival time, because it gives
the time that an individual has “survived” over
some follow-up period. We also typically refer
to the event as a failure, because the event of
interest usually is death, disease incidence, or
some other negative individual experience.
However, survival time may be “time to return
to work after an elective surgical procedure,” in
which case failure is a positive event.



EXAMPLE

1. Leukemia patients/time in remission
(weeks)

2. Disease-free cohort/time until heart
disease (years)

3. Elderly (60+) population/time until
death (years)

4. Parolees (recidivism study)/time
until rearrest (weeks)

5. Heart transplants/time until death
(months)

Presentation: Il. Censored Data 5

Five examples of survival analysis problems
are briefly mentioned here. The first is a study
that follows leukemia patients in remission
over several weeks to see how long they stay
in remission. The second example follows a
disease-free cohort of individuals over several
years to see who develops heart disease. A third
example considers a 13-year follow-up of an
elderly population (60+ years) to see how long
subjects remain alive. A fourth example follows
newly released parolees for several weeks to
see whether they get rearrested. This type of
problem is called a recidivism study. The fifth
example traces how long patients survive after
receiving a heart transplant.

All of the above examples are survival analysis
problems because the outcome variable is time
until an event occurs. In the first example,
involving leukemia patients, the event of inter-
est (i.e., failure) is “going out of remission,”
and the outcome is “time in weeks until a
person goes out of remission.” In the second
example, the event is “developing heart dis-
ease,” and the outcome is “time in years until
a person develops heart disease.” In the third
example, the event is “death” and the outcome
is “time in years until death.” Example four,
a sociological rather than a medical study, con-
siders the event of recidivism (i.e., getting rear-
rested), and the outcome is “time in weeks until
rearrest.” Finally, the fifth example considers
the event “death,” with the outcome being
“time until death (in months from receiving
a transplant).”

We will return to some of these examples later
in this presentation and in later presentations.

Il. Censored Data

Censoring: don’t know survival
time exactly

Most survival analyses must consider a key
analytical problem called censoring. In essence,
censoring occurs when we have some informa-
tion about individual survival time, but we don’t
know the survival time exactly.
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EXAMPLE

1. Introduction to Survival Analysis

Leukemia patients in remission:

Why censor?

1.
2.

study ends — no event
lost to follow-up
3. withdraws

EXAMPLE

o™ o O O W >

Weeks —»

2 4

6 8 10 12
T

=5

T=12

X

T=3.5 Withdrawn

T=6

T=8

Lost

T=3.5 X

Study end

i Study end

X = Event occurs

As a simple example of censoring, consider
leukemia patients followed until they go out
of remission, shown here as X. If for a given
patient, the study ends while the patient is still
in remission (i.e., doesn’t get the event), then
that patient’s survival time is considered cen-
sored. We know that, for this person, the sur-
vival time is at least as long as the period that
the person has been followed, but if the person
goes out of remission after the study ends,
we do not know the complete survival time.

There are generally three reasons why censor-
ing may occur:

(1) a person does not experience the event
before the study ends;

(2) a person is lost to follow-up during the
study period;

(3) a person withdraws from the study
because of death (if death is not the event
of interest) or some other reason (e.g.,
adverse drug reaction or other competing

risk)

These situations are graphically illustrated
here. The graph describes the experience of
several persons followed over time. An X
denotes a person who got the event.

Person A, for example, is followed from the
start of the study until getting the event at
week 5; his survival time is 5 weeks and is not
censored.

Person B also is observed from the start of the
study but is followed to the end of the 12-week
study period without getting the event; the sur-
vival time here is censored because we can say
only that it is at least 12 weeks.

Person C enters the study between the second
and 3rd week and is followed until he with-
draws from the study at 6 weeks; this person’s
survival time is censored after 3.5 weeks.

Person D enters at week 4 and is followed for
the remainder of the study without getting the
event; this person’s censored time is 8 weeks.
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Person E enters the study at week 3 and
is followed until week 9, when he is lost to
follow-up; his censored time is 6 weeks.

Person F enters at week 8 and is followed until
getting the event at week 11.5. As with person
A, there is no censoring here; the survival time
is 3.5 weeks.

SUMMARY
Event: A, F
Censored: B, C, D, E

In summary, of the six persons observed, two
get the event (persons A and F) and four are
censored (B, C, D, and E).

Survival Failed (1);
Person time Censored (0)
A 5 1
B 12 0
D 8 0

Right-censored: true survival time
is equal to or greater than observed

survival time

m m g O w >

Weeks —»
4 6 8 10 12
T T T T T :
X :
E Study end
—— Withdrawn &

Lost

X

RIGHT
CENSORED
Sthd

s

y end

A table of the survival time data for the six
persons in the graph is now presented. For
each person, we have given the corresponding
survival time up to the event’s occurrence or up
to censorship. We have indicated in the last
column whether this time was censored or not
(with 1 denoting failed and 0 denoting cen-
sored). For example, the data for person C is a
survival time of 3.5 and a censorship indicator of
0, whereas for person F the survival time is 3.5
and the censorship indicator is 1. This table is a
simplified illustration of the type of data to be
analyzed in a survival analysis.

Notice in our example that for each of the four
persons censored, we know that the person’s
true survival time becomes incomplete at the
right side of the follow-up period, occurring
when the study ends or when the person is
lost to follow-up or is withdrawn. We generally
refer to this kind of data as right-censored.
For these data, the complete survival time
interval, which we don’t really know, has been
cut off (i.e., censored) at the right side of the
observed survival time interval. Although data
can also be left-censored, most survival data is
right-censored.
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Left-censored: true survival time
is less than or equal to the observed
survival time

HIV +
test

Time

-~

HIV exposure

Event occurs between 0 and t
but
do not know the exact time.

Interval-censored: true survival
time is within a known time interval

HIV - HIV +
test test
| } Time
0 t, ? t,

f

HIV exposure

Left censoring = t; =0, t, = upper bound

Right censoring = t; = lower bound, t; =

Right-censored due to competing risk,
e.g., death from another cause
I
tz =0
gives upper bound for true survival time
assuming that competing risk had not
occurred.

Left-censored: data can occur when a person’s
true survival time is less than or equal to that
person’s observed survival time. For example,
if we are following persons until they become
HIV positive, we may record a failure when a
subject first tests positive for the virus. How-
ever, we may not know the exact time of first
exposure to the virus, and therefore do not
know exactly when the failure occurred. Thus,
the survival time is censored on the left side
since the true survival time, which ends at
exposure, is shorter than the follow-up time,
which ends when the subject’s test is positive.

In other words, if a person is left-censored
at time t, we know they had an event between
time 0 and t, but we do not know the exact time
of event.

Survival analysis data can also be interval-
censored, which can occur if a subject’s true
(but unobserved) survival time is within a
certain known specified time interval. As an
example, again considering HIV surveillance,
a subject may have had two HIV tests, where
he/she was HIV negative at the time (say, t;) of
the first test and HIV positive at the time (t;)
of the second test. In such a case, the subject’s
true survival time occurred after time t; and
before time t,, i.e., the subject is interval-
censored in the time interval (t;, t5).

Interval-censoring actually incorporates both
right-censoring and left-censoring as special
cases. Left-censored data occur whenever the
value of t; is 0 and t, is a known upper bound
on the true survival time. In contrast, right-
censored data occurs whenever the value of t,
is infinity, and t; is a known lower bound on
the true survival time.

If an individual is right-censored due to a com-
peting event (e.g., death from another cause),
then in this context, we consider what the true
survival time would have been if the competing
event had not occurred. In other words, when we
state that the value of the upper bound for the
true survival time is infinity for right-censored
data, we are considering what would have
occurred in the absence of a competing risk.
Competing risks are fully discussed in Chapter 9.
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Ill. Terminology and

Notation

T = survival time (7 > 0)

random variable

t = specific value for T

EXAMPLE

Survives > 5 years?
T>t=5

d = (0, 1) random variable

_J 1 iffailure
~ 10 censored

e study ends

e lost to follow-up
e withdraws

S(#) = survivor function

h(t) = hazard function

S@)=P(T >1)

S(@?)

W~ [~

S(1)=P(T> 1)
S(2) = P(T > 2)
S(3)=P(T > 3)

We are now ready to introduce basic mathe-
matical terminology and notation for survival
analysis. First, we denote by a capital T the
random variable for a person’s survival time.
Since T denotes time, its possible values include
all nonnegative numbers; that is, T can be any
number equal to or greater than zero.

Next, we denote by a small letter ¢ any spe-
cific value of interest for the random variable
capital T. For example, if we are interested in
evaluating whether a person survives for more
than 5 years after undergoing cancer therapy,
small ¢ equals 5; we then ask whether capital T
exceeds 5.

Finally, we denote the small letter d to define a
(0,1) random variable indicating either failure
or censorship. That is, d = 1 for failure if the
event occurs during the study period, or d =
0 if the survival time is censored by the end of
the study period. Note that if a person does not
fail, that is, does not get the event during the
study period, censorship is the only remaining
possibility for that person’s survival time. That
is, d = 0 if and only if one of the following
happens: a person survives until the study
ends, a person is lost to follow-up, or a person
withdraws during the study period.

We next introduce and describe two quantitative
terms considered in any survival analysis. These
are the survivor function, denoted by S(z), and
the hazard function, denoted by A(z).

The survivor function S(¢) gives the probability
that a person survives longer than some speci-
fied time ¢: that is, S(¢) gives the probability
that the random variable T exceeds the speci-
fied time ¢.

The survivor function is fundamental to a
survival analysis, because obtaining survival
probabilities for different values of ¢ provides
crucial summary information from survival
data.
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Introduction to Survival Analysis

Theoretical S(¢):
S(0)=1
1
S(t)
0 t 0o —P
é(t) in practice:
1 ‘\_L i
N0)
0 t Stu(liy end

h(f) = lim

Ar—0

P<T<t+AMT >1)

At

Theoretically, as ¢ ranges from 0 up to infinity,
the survivor function can be graphed as a
smooth curve. As illustrated by the graph,
where ¢ identifies the X-axis, all survivor func-
tions have the following characteristics:

e they are nonincreasing; that is, they head
downward as ¢ increases;

o attimer =0, S = S(0) = 1; that is, at the
start of the study, since no one has gotten
the event yet, the probability of surviving
past time 0 is one;

e at time t = oo, S(¢) = S(c0) = 0; that is,
theoretically, if the study period increased
without limit, eventually nobody would
survive, so the survivor curve must
eventually fall to zero.

Note that these are theoretical properties of
survivor curves.

In practice, when using actual data, we usually
obtain graphs that are step functions, as illu-
strated here, rather than smooth curves. More-
over, because the study period is never infinite
in length and there may be competing risks for
failure, it is possible that not everyone studied
gets the event. The estimated survivor function,
denoted by a caret over the S in the graph, thus
may not go all the way down to zero at the end
of the study.

The hazard function, denoted by h(#), is given
by the formula: 4(¢) equals the limit, as Az
approaches zero, of a probability statement
about survival, divided by A¢, where At denotes
a small interval of time. This mathematical for-
mula is difficult to explain in practical terms.



h(t) = instantaneous potential

Velocity at time t

h(t)

N

S(t): not failing

h(t): failing

60

Instantaneous potential
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Before getting into the specifics of the formula,
we give a conceptual interpretation. The haz-
ard function h(¢) gives the instantaneous
potential per unit time for the event to
occur, given that the individual has survived
up to time ¢. Note that, in contrast to the survi-
vor function, which focuses on not failing, the
hazard function focuses on failing, that is, on
the event occurring. Thus, in some sense, the
hazard function can be considered as giving
the opposite side of the information given by
the survivor function.

To get an idea of what we mean by instanta-
neous potential, consider the concept of veloc-
ity. If, for example, you are driving in your car
and you see that your speedometer is register-
ing 60 mph, what does this reading mean?
It means that if in the next hour, you continue
to drive this way, with the speedometer exactly
on 60, you would cover 60 miles. This reading
gives the potential, at the moment you have
looked at your speedometer, for how many
miles you will travel in the next hour. However,
because you may slow down or speed up or
even stop during the next hour, the 60-mph
speedometer reading does not tell you the
number of miles you really will cover in the
next hour. The speedometer tells you only
how fast you are going at a given moment,;
that is, the instrument gives your instanta-
neous potential or velocity.

Similar to the idea of velocity, a hazard func-
tion /&(t) gives the instantaneous potential at
time ¢ for getting an event, like death or some
disease of interest, given survival up to time z.
The “given” part, that is, surviving up to time z,
is analogous to recognizing in the velocity
example that the speedometer reading at a
point in time inherently assumes that you have
already traveled some distance (i.e., survived)
up to the time of the reading.
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h(t)

= lim

At—0

Conditional probabilities: P(A|B)

Pe<T<t+At|T>1)

= P(individual fails in the interval
[z, t + At] | survival up to time ¢)

Hazard function = conditional
failure rate

lim

Pt<T<t+ At|T 21

At—0

At

Probability per unit time

Rate: 0 to ©

P=Pat<T<t+ AT >1)

P At P/At = rate

1 1 1/3

1 1 1/3

3 ﬁweek i 4.67 /week

Introduction to Survival Analysis

Given \

P(t<T<t+At| T2>t)
At

In mathematical terms, the given part of the
formula for the hazard function is found in
the probability statement in the numerator to
the right of the limit sign. This statement is a
conditional probability because it is of the
form, “P of A, given B,” where the P denotes
probability and where the long vertical line
separating A from B denotes “given.” In the
hazard formula, the conditional probability
gives the probability that a person’s survival
time, 7, will lie in the time interval between
t and t + At, given that the survival time is
greater than or equal to ¢. Because of the
given sign here, the hazard function is some-
times called a conditional failure rate.

We now explain why the hazard is a rate rather
than a probability. Note that in the hazard
function formula, the expression to the right
of the limit sign gives the ratio of two quanti-
ties. The numerator is the conditional proba-
bility we just discussed. The denominator is At,
which denotes a small time interval. By this
division, we obtain a probability per unit
time, which is no longer a probability but a
rate. In particular, the scale for this ratio is
not 0 to 1, as for a probability, but rather
ranges between 0 and infinity, and depends
on whether time is measured in days, weeks,
months, or years, etc.

For example, if the probability, denoted here
by P, is 1/3, and the time interval is one-half
a day, then the probability divided by the
time interval is 1/3 divided by 1/2, which equals
0.67 per day. As another example, suppose, for
the same probability of 1/3, that the time inter-
val is considered in weeks, so that 1/2 day
equals 1/14 of a week. Then the probability
divided by the time interval becomes 1/3 over
1/14, which equals 14/3, or 4.67 per week. The
point is simply that the expression P divided by
At at the right of the limit sign does not give
a probability. The value obtained will give a
different number depending on the units of
time used, and may even give a number
larger than one.
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e h(®)>0
h(t) has no upper bound

EXAMPLE

O|

Constant hazard
(exponential model)

h(t) for healthy
persons

A
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When we take the limit of the right-side expres-
sion as the time interval approaches zero, we
are essentially getting an expression for the
instantaneous probability of failing at time ¢
per unit time. Another way of saying this is
that the conditional failure rate or hazard func-
tion /(t) gives the instantaneous potential for
failing at time ¢ per unit time, given survival up
to time ¢.

As with a survivor function, the hazard func-
tion /(t) can be graphed as t ranges over vari-
ous values. The graph at the left illustrates
three different hazards. In contrast to a survi-
vor function, the graph of /() does not have to
start at 1 and go down to zero, but rather can
start anywhere and go up and down in any
direction over time. In particular, for a speci-
fied value of ¢, the hazard function /4(z) has the
following characteristics:

e it is always nonnegative, that is, equal to or
greater than zero;

e it has no upper bound.

These two features follow from the ratio
expression in the formula for %(t), because
both the probability in the numerator and the
At in the denominator are nonnegative, and
since At can range between 0 and oc.

Now we show some graphs of different types of
hazard functions. The first graph given shows a
constant hazard for a study of healthy persons.
In this graph, no matter what value of t is spe-
cified, h(t) equals the same value—in this exam-
ple, L. Note that for a person who continues
to be healthy throughout the study period, his/
her instantaneous potential for becoming ill
at any time during the period remains constant
throughout the follow-up period. When the
hazard function is constant, we say that the
survival model is exponential. This term fol-
lows from the relationship between the survivor
function and the hazard function. We will
return to this relationship later.
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EXAMPLE: (continued)

® T Weibull
h(t) for leukemia
patients
t
® 1 Weibull
h(¢) for Persons
recovering from
surgery
t
® T | lognormal
h(t) for TB
patients
t

S(2): directly describes survival
h(t): e ameasure of
instantaneous potential
e identify specific model
form
¢ math model for survival
analysis

The second graph shows a hazard function that
is increasing over time. An example of this kind
of graph is called an increasing Weibull
model. Such a graph might be expected for
leukemia patients not responding to treatment,
where the event of interest is death. As survival
time increases for such a patient, and as the
prognosis accordingly worsens, the patient’s
potential for dying of the disease also increases.

In the third graph, the hazard function is
decreasing over time. An example of this kind
of graph is called a decreasing Weibull. Such
a graph might be expected when the event
is death in persons who are recovering from
surgery, because the potential for dying after
surgery usually decreases as the time after sur-
gery increases.

The fourth graph given shows a hazard func-
tion that is first increasing and then decreas-
ing. An example of this type of graph is the
lognormal survival model. We can expect
such a graph for tuberculosis patients, since
their potential for dying increases early in the
disease and decreases later.

Of the two functions we have considered, S(¢)
and h(¢), the survivor function is more natu-
rally appealing for analysis of survival data,
simply because S(¢) directly describes the sur-
vival experience of a study cohort.

However, the hazard function is also of interest
for the following reasons:

e it is a measure of instantaneous potential
whereas a survival curve is a cumulative
measure over time;

e it may be used to identify a specific model
form, such as an exponential, a Weibull, or
a lognormal curve that fits one’s data;

e it is the vehicle by which mathematical
modeling of survival data is carried out;
that is, the survival model is usually written
in terms of the hazard function.



Relationship of S(z) and h(t):
If you know one, you can deter-
mine the other.

EXAMPLE

h(t) = ) if and only if S(r) = e

General formulae:

S(t) = exp [— /Orh(u)du]

S(t) h(t)
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Regardless of which function S(¢) or 4(¢) one
prefers, there is a clearly defined relation-
ship between the two. In fact, if one knows
the form of S(¢), one can derive the corres-
ponding h(#), and vice versa. For example,
if the hazard function is constant, i.e., h(t) =
A, for some specific value A, then it can be
shown that the corresponding survival func-
tion is given by the following formula: S(z)
equals e to the power minus A times ¢.

More generally, the relationship between S(t)
and &(t) can be expressed equivalently in either
of two calculus formulae shown here.

The first of these formulae describes how the
survivor function S(¢) can be written in terms
of an integral involving the hazard function.
The formula says that S(¢) equals the expo-
nential of the negative integral of the hazard
function between integration limits of 0 and ¢.

The second formula describes how the hazard
function 4(¢) can be written in terms of a deriv-
ative involving the survivor function. This for-
mula says that /4(t) equals minus the derivative
of S(¢) with respect to ¢ divided by S(z).

In any actual data analysis, a computer pro-
gram can make the numerical transformation
from S(¥) to h(?), or vice versa, without the user
ever having to use either formula. The point
here is simply that if you know either S(z) or
h(t), you can get the other directly.

SUMMARY

T = survival time random
variable

t = specific value of T

d = (0.1) variable for failure/
censorship

S(¢) = survivor function

h(t) = hazard function

At this point, we have completed our dis-
cussion of key terminology and notation. The
key notation is T for the survival time vari-
able, t for a specified value of T, and d for
the dichotomous variable indicating event
occurrence or censorship. The key terms
are the survivor function S(z) and the
hazard function h(t), which are in essence
opposed concepts, in that the survivor func-
tion focuses on surviving whereas the hazard
function focuses on failing, given survival up
to a certain time point.
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IV. Goals of Survival

Analysis

S(1) S(0)

Goal 3: Use math modeling, e.g.,
Cox proportional hazards

Treatment

S(1) v

Placebo

We now state the basic goals of survival analysis.

Goal 1: To estimate and interpret survivor and/
or hazard functions from survival data.

Goal 2: To compare survivor and/or hazard
functions.

Goal 3: To assess the relationship of explana-
tory variables to survival time.

Regarding the first goal, consider, for example,
the two survivor functions pictured at the left,
which give very different interpretations. The
function farther on the left shows a quick drop
in survival probabilities early in follow-up but a
leveling off thereafter. The function on the
right, in contrast, shows a very slow decrease
in survival probabilities early in follow-up but a
sharp decrease later on.

We compare survivor functions for a treat-
ment group and a placebo group by graphing
these functions on the same axis. Note that up
to 6 weeks, the survivor function for the treat-
ment group lies above that for the placebo
group, but thereafter the two functions are at
about the same level. This dual graph indicates
that up to 6 weeks the treatment is more
effective for survival than the placebo but has
about the same effect thereafter.

Goal 3 usually requires using some form of
mathematical modeling, for example, the Cox
proportional hazards approach, which will be
the subject of subsequent chapters.

V. Basic Data Layout

Two types of data layouts:

for Computer

for computer use
for understanding

We previously considered some examples of
survival analysis problems and a simple data
set involving six persons. We now consider the
general data layout for a survival analysis.
We will provide two types of data layouts, one
giving the form appropriate for computer use,
and the other giving the form that helps us
understand how a survival analysis works.
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For computer:

Indiv. #

t

i X XZ...XP

L
5]

d Xy X"ttt Xy,
dy X5 Xy X

ts = 3 got event)

tg = 3 consored )

d, X

n nl

s e
XnZ an

Indiv. #

t

Failure Explanatory
status variables

I
153

d Xy X't X

ts=3

ds=1)

2d;= # failures .
1

tg=3

dg=0 )

d Xn] XnZ ce an

n

We start by providing, in the table shown here,
the basic data layout for the computer. Assume
that we have a data set consisting of n persons.
The first column of the table identifies each
person from 1, starting at the top, to #, at the
bottom.

The remaining columns after the first one pro-
vide survival time and other information for
each person. The second column gives the sur-
vival time information, which is denoted ¢; for
individual 1, ¢, for individual 2, and so on, up
to t,, for individual n. Each of these #’s gives the
observed survival time regardless of whether
the person got the event or is censored. For
example, if person 5 got the event at 3 weeks
of follow-up, then ¢5 = 3; on the other hand,
if person 8 was censored at 3 weeks, without
getting the event, then ¢g = 3 also.

To distinguish persons who get the event from
those who are censored, we turn to the third
column, which gives the information for status
(i.e., d) the dichotomous variable that indicates
censorship status.

Thus, d; is 1 if person 1 gets the event or is 0 if
person 1 is censored; d, is 1 or 0 similarly, and
so on, up through d,,. In the example just con-
sidered, person 5, who failed at 3 weeks, has a d
of 1; that is, ds equals 1. In contrast, person 8,
who was censored at 3 weeks, has a d of 0; that
is, dg equals 0.

Note that if all of the d values in this column are
added up, their sum will be the total number of
failures in the data set. This total will be some
number equal to or less than n, because not
every one may fail.

The remainder of the information in the table
gives values for explanatory variables of inter-
est. An explanatory variable, X; is any variable
like age or exposure status, E, or a product
term like age x race that the investigator
wishes to consider to predict survival time.
These variables are listed at the top of the
table as X;, X5, and so on, up to X,. Below
each variable are the values observed for that
variable on each person in the data set.
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Columns

# ¢+ d X, X,***X

Lon d Xy Xttt &y,
2 L dy Xy Xp*°°

Rows
-
Y
e
o

EXAMPLE

The data: Remission times (in weeks)
for two groups of leukemia patients

Group 1 Group 2
(Treatment) n = 21 (Placebo) n = 21
6,6,6,7,10, 1,1,2,2,3,

13, 16, 22, 23, 4,4,5,5,

6+, 9+, 10+, 11+, 8§,8,8, 8,

17+, 19+, 20+, 11, 11, 12, 12,
25+, 32+, 32+, 15,17, 22, 23
34+, 35+

In remission
/ at study end
+ denotes > Lost to
censored \ follow-up
Withdraws

For example, in the column corresponding to X;
are the values observed on this variable for all
n persons. These values are denoted as X1, X1,
and so on, up to X,,;; the first subscript indicates
the person number, and the second subscript, a
one in each case here, indicates the variable
number. Similarly, the column corresponding
to variable X, gives the values observed on X,
for all n persons. This notation continues for the
other X variables up through X,,.

We have thus described the basic data layout
by columns. Alternatively, we can look at the
table line by line, that is, by rows. For each line
or row, we have the information obtained on
a given individual. Thus, for individual i,
the observed information is given by the
values t;, d;, X;1, X2, etc., up to X,. This is how
the information is read into the computer,
that is, line by line, until all persons are
included for analysis.

As an example of this data layout, consider the
following set of data for two groups of leuke-
mia patients: one group of 21 persons has
received a certain treatment; the other group
of 21 persons has received a placebo. The data
come from Freireich et al., Blood, 1963.

As presented here, the data are not yet in
tabular form for the computer, as we will see
shortly. The values given for each group consist
of time in weeks a patient is in remission, up to
the point of the patient’s either going out of
remission or being censored. Here, going out
of remission is a failure. A person is censored if
he or she remains in remission until the end of
the study, is lost to follow-up, or withdraws
before the end of the study. The censored data
here are denoted by a plus sign next to the
survival time.
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Group 1 Group 2
(Treatment) n = 21 (Placebo) n = 21
6,6,6,7, 10, 1,1,2,2,3,
13, 16, 22, 23, 4,4,5,5,
6+, 9+, 10+, 11+, 8,8, 8,8,
17+, 19+, 20+, 11, 11, 12, 12,
25+, 324, 32+, 15, 17, 22, 23
34+, 35+
#failed # censored  Total
Group 1 9 12 21
Group 2 21 0 21
Indiv. d (failed or X
# t(weeks) censored) (Group)
1 6 1 1
2 6 1 1
® 6 1 1
4 7 1 1
5 10 1 1
6 13 1 1
7 16 1 1
8 22 1 1
GROUP 9 23 1 1
1 10 6 0 1
11 9 0 1
12 10 0 1
13 11 0 1
17 0 1
0 1
0 1
0 1
0 1
0 1
0 1
0 1

Here are the data again:

Notice that the first three persons in group 1
went out of remission at 6 weeks; the next
6 persons also went out of remission, but at
failure times ranging from 7 to 23. All of the
remaining persons in group 1 with pluses next
to their survival times are censored. For exam-
ple, on line three the first person who has a plus
sign next to a 6 is censored at 6 weeks. The
remaining persons in group 1 are also cen-
sored, but at times ranging from 9 to 35 weeks.

Thus, of the 21 persons in group 1, nine failed
during the study period, whereas the last 12
were censored. Notice also that none of the
data in group 2 is censored; that is, all 21 per-
sons in this group went out of remission during
the study period.

We now put this data in tabular form for the
computer, as shown at the left. The list starts
with the 21 persons in group 1 (listed 1-21) and
follows (on the next page) with the 21 persons
in group 2 (listed 22-42). Our n for the com-
posite group is 42.

The second column of the table gives the sur-
vival times in weeks for all 42 persons. The
third column indicates failure or censorship
for each person. Finally, the fourth column
lists the values of the only explanatory variable
we have considered so far, namely, group sta-
tus, with 1 denoting treatment and 0 denoting
placebo.

If we pick out any individual and read across
the table, we obtain the line of data for that
person that gets entered in the computer.
For example, person #3 has a survival time of
6 weeks, and since d = 1, this person failed, that
is, went out of remission. The X value is 1
because person #3 is in group 1. As a second
example, person #14, who has an observed sur-
vival time of 17 weeks, was censored at this
time because d = 0. The X value is again 1
because person #14 is also in group 1.
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EXAMPLE: (continued)

Alternative Data Layout: Counting

d (failed

or X

Indiv. # ¢ (weeks) censored) (Group)
22 1 1 0
23 1 1 0
24 2 1 0
25 2 1 0
26 3 1 0
27 4 1 0
GROUP 28 4 1 0
2 29 5 1 0
30 5 1 0
31 8 1 0
® 8 1 0
33 8 1 0
34 8 1 0
35 11 1 0
36 11 1 0
37 12 1 0
38 12 1 0
39 15 1 0
40 17 1 0
41 22 1 0
42 23 1 0

Process (Start, Stop) Format

CP Format: applies to more com-

plicated survival analysis

Age-at follow-up is outcome
Time-dependent variables
Recurrent events

Gaps in follow-up

Data Layoit CP JAppmach
i dy i i X oo Xigp

o

L1 dy ty o Xyppocee Xiip
Subject< | dip g by Xy v Xigp
h : : : :

Lo dig tigo e Xt v e Xiggp

il dyp G Gt Xgnocee Xy
Subject 4 1 2 d.iz oot X ot Xigp
; P i : :

1 dy tigo b Xy eee X

irjp

n 1 dy ot Xan s Xagp
Subject< 1 2 dp> 2o o Xoop eee Xn2p
n ] H : H H :

nr dy ottt Xagt eee Xanp

As one more example, this time from group 2,
person #32 survived 8 weeks and then failed,
because d = 1; the X value is 0 because person
#32 is in group 2.

An alternative format for the computer is called
the Counting Process (CP) format.

The CP format is useful for more complicated
survival analysis situations that we discuss
in later chapters, in particular when age-at-
follow-up time is used as the outcome variable
instead of time of follow-up (Chap. 3), when
there are time-dependent variables (Chap. 6),
and when there are recurrent events and/or
gaps in follow-up (Chap. 8).

The general CP format is shown on the left.
This format differs from the previously
described “standard” data layout in two ways.
First, the CP format allows multiple lines of
data for the same individual; that is, each
individual’s total at-risk-follow-up time is sub-
divided into smaller time intervals to allow
for recurrent events on the same individual.
Second, there are two time points specified
for each individual, labeled in the layout as
tijo and t;;;, and often referred to as START and
STOP times, respectively.
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subject
. \/ 77777777 N
i dy Vi tijt ' Xijt Xiip
! !
1 I
1 1 dy ;0 o X Xiip
: F Lo :
: o v :
I
i 1 dy ;O G Xy Xip
A :
I
oo bdy :\ 0 & 1 X Xatp

CP Format for Group 1 of Remi-

ssion Time Dataset

i j djstart stop) X(Group)
1 1 1] 0 6 1
2 1 1[0 6 1
31 1[0 6 1
4 1 1] 0 7 1
5.1 110 10 | 1
6 1 110 1311
7 1 1[0 16 | 1
8§ 1 1[0 2271
9 1 110 23] 1
101 0] 0 12 ] 1
11 1 0] 0 6 1
9 1 0 0 32|11
20 1 0] 0 34(1
21 1 0L O 35) 1

The first two columns in this format are
labeled i (for subject number) and j (for data-
line number for the ith subject). As in the stan-
dard format, i ranges from 1 to n; also, in
the CP format, j ranges from 1 to r;, where r;
denotes the number of datalines for the i-th
subject.

The third column labeled d;; denotes the failure
status (1=failed, 0=censored) for the j-th data-
line on the i-th subject.

The next two columns identify two time points
required for each dataline, the START time
(tijo) and the STOP time (t;;;). These two col-
umns are the primary distinguishing feature of
the CP format.

The simplest CP format occurs when the out-
come is follow-up time since study entry and
when there are no recurrent events or time-
dependent covariates, as in our previously
described Remission Time Dataset. In this sit-
uation, there is one dataline for each subject
(i.e., ri=1 for all i so that the only value that j
takes is 1), the start time (tj;o) is O for each
subject, and the stop time (t;;;) is the follow-
up time (t) until either the event or censorship
occurs.

As an example, the CP format for Group 1 of
the Remission Time Dataset is shown on the
left. Note that the value of j is 1 throughout the
table, the start times are all zero, and the stop
times are the failure or censored survival times
for each subject.
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CP Format: First 15 Subjects-

1.
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~—

Bladder Canscer Study
i j d start stop tx num size
1 1 0 0 O 0 1 1
2 1 0 0 1 0o 1 3
3 1 0 0 4 0 2 1
4 1 0 0 7 0o 1 1
5 1 0 0 10 0 5 1
6 1 1 0 6 0 4 1
[6 2 0 6 10 0 4 1
7 1 0 0 14 0 1 1
g 1 0 0 18 0 1 1
9 1 1 0 5 0o 1 3
9 2 0 5 18 0 1 3
w1 1 0 12 0 1 1
0 2 1 12 16 0 1 1
10 3 0 16 18 0 1 1
1m 1 0 0 23 0 3 3
21 1 0 10 0 1 3
12 2 1 10 15 0 1 3
12 3 0 15 23 0 1 3
31 1 0 3 0 1 1
32 1 3 16 0 1 1
133 1 16 23 0 1 1
4 1 1 0 3 0 3 1
4 2 1 3 9 0 3 1
4 3 1 9 21 0 3 1
14 4 0 21 23 0 3 1
51 1 0 7 0 2 3
5 2 1 7 10 0 2 3
5 3 1 10 16 0 2 3
15 4 0 16 24 0 2 3

We now illustrate the CP format that allows for
more than one dataline per subject as well as
start times other than zero. We consider data
on the first 15 subjects from a study of recur-
rent bladder cancer tumors (Byar, 1980; and
Weli, Lin and Weissfeld, 1989). The entire data-
set contained 86 patients, each followed for a
variable amount of time up to 64 months.
We describe how to analyze this dataset in
Chapter 8 on Recurrent Event Survival Analy-
sis. Here, we only describe how this data layout
fits the CP format.

The event being analyzed is the recurrence of
bladder cancer tumor after transurethral sur-
gical excision. Each recurrence of new tumors
was treated by removal at each examination.

The exposure variable of interest is drug treat-
ment status (tx, 0=placebo, 1= treatment with
thiotepa). Although each of 15 subjects shown
here are in the placebo group (tx=0), several
other subjects in the larger dataset are in the
treatment group (tx=1).

The covariates listed here are initial number
of tumors (num) and initial size of tumors
(size) in centimeters. Both these variables
have the same value for each subject (i.e.,
time-independent variables), although the gen-
eral data layout also allows for time-dependent
variables.

Notice that several subjects in this dataset,
namely subjects 6, 9, 10, 12, 13, 14, and 15
have two or more datalines. Subject 6, for
example, has two datalines (i.e., rg = 2),
whereas subject 14 has 4 datalines (i.e., ri4 = 4).
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Bladder Canscer Study (cont’d)

i

i

d start stop tx num size

6 1 1 0 6 0 4 1
6 2 0 6 10 0 4 1
i j d start stop tx num size
4 1 1 0 3 0 3 1
4 2 1 3 9 0o 3 1
4 3 1 9 21 0o 3 1
14 4 0 21 23 0o 3 1

CP format illustrated for other

situations in later chapters.

See Computer Appendix for com-
puter code in CD format for SAS,

STATA, and R.

The first of the two lines for subject 6 tells us that
this subject had a (first) recurrent bladder cancer
event (i.e., d=1) at 6 months (i.e., stop =6). This
subject was then followed for another 4 months
(from 6 to 10, as shown on the second dataline
for this subject, where the start time is 6 and the
stop time is 10. At 10 months, the subject is
censored (d=0); in other words, this subject did
not get a second recurrent event at 10 months,
after which no further information is available.

Subject 14 had three recurrent events, the first
one at 3 months (i.e., stop =3), the second one
at 9 months (i.e., stop =9), and the third one at
21 months (i.e., stop =21). This subject was
followed for another 2 months (start =21 to
stop =23 on dataline number j=4) without
another event occurring (d=0).

As mentioned at the beginning of this section,
the CP format is also applicable when age-at-
follow-up time is used as the outcome variable
instead of time of follow-up (Chapter 3), when
there are time-dependent variables (Chapter 6),
and when there are gaps in follow-up (Chapter 8).
We will illustrate these latter situations within
the later chapters just mentioned.

In the Computer Appendix, we describe the
computer code required by SAS, STATA, and
R packages when the data is set up in CP for-
mat for the analysis of recurrent event survival
data and when age is used as the time scale
instead of time-on-study.

VI. Basic Data Layout for
Understanding
Analysis

For analysis:

Ordered # of # censored  Risk
failure times failures in [t tr1)) setR
(tn) (mp) (qp) (tm)
to)y= 0 moy=0 qo0 R(f(o))
L) nm; q1 R(t(l))
l@) m; a2 R(t)
Ly ny qk R(t())

We are now ready to look at another data lay-
out, which is shown at the left. This layout
helps provide some understanding of how a
survival analysis actually works and, in parti-
cular, how survivor curves are derived.

The first column in this table gives ordered
failure times. These are denoted by t’s with
subscripts within parentheses, starting with
t«), then ¢y and so on, up to zy). Note that
the parentheses surrounding the subscripts
distinguish ordered failure times from the sur-
vival times previously given in the computer
layout.
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{tl, 1, ...

k = # of distinct times at whick subjects
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failed (k < n)

EXAMPLE

Remission Data: Group 1
(n =21, 9 failures, k = 7)

st} ‘Chitsoral 75
Unordered Failed ¢’s

ordered (#(r))

0 mp gp R(tp)

t=0 0 0 21 persons survive >0 wks
[1)=6 @ 1 21 persons survive =6 wks
to="1 1 1 17 persons survive >7 wks
t3=10 1 2 15 persons survive > 10 wks
tgy=13 1 0 12 persons survive = 13 wks
t5=16 1 3 11 persons survive > 16 wks
tgy=22 r 0 7 persons survive > 22 wks
tqy=23 1 5 6 persons survive > 23 wks
Totals 9 12

Remission Data: Group 2
(n = 21, 21 failures, k = 12)

(o)

me gy R(tp)

=0
=1
=2

)
L0
=1
=4
fi=5
fi= 6
fiy= 11

Iey=12

)= 15

by = 17
fiay =22
fii =2

0 0 21 persons survive
0 21 persons survive
0 19 persons survive

17 persons survive

0
16 persons survive

R R

14 persons survive

12 persons survive

N Sl )

>0 wks
> 1 wks
>2 wks
> 3 wks
>4 wks
> 5 wks

> 8 wks

8 persons survive > 11 wks

6 persons survive > 12 wks

3 persons survive > 17 wks
2 persons survive > 22 wks

1 person survive > 23 wks

Totals

21

0
0
0
0
0 4 persons survive > 15 wks
0
0
0
0

To get ordered failure times from survival
times, we must first remove from the list of
unordered survival times all those times that
are censored; we are thus working only with
those times at which people failed. We then
order the remaining failure times from smal-
lest to largest, and count ties only once. The
value k gives the number of distinct times at
which subjects failed.

For example, using the remission data for
group 1, we find that 9 of the 21 persons failed,
including 3 persons at 6 weeks and 1 person
each at 7, 10, 13, 16, 22, and 23 weeks. These
nine failures have k = 7 distinct survival times,
because three persons had survival time 6 and
we only count one of these 6’s as distinct. The
first ordered failure time for this group,
denoted as t(3), is 6; the second ordered failure
time t(;), is 7, and so on up to the seventh
ordered failure time of 23.

Turning to group 2, we find that although
all 21 persons in this group failed, there are
several ties. For example, two persons had a
survival time of 1 week; two more had a sur-
vival time of 2 weeks; and so on. In all, we find
that there were k = 12 distinct survival times
out of the 21 failures. These times are listed in
the first column for group 2.

Note that for both groups we inserted a row of
data giving information at time 0. We will
explain this insertion when we get to the third
column in the table.

The second column in the data layout gives
frequency counts, denoted by 11, of those per-
sons who failed at each distinct failure time.
When there are no ties at a certain failure
time, then my = 1. Notice that in group 1, there
were three ties at 6 weeks but no ties thereafter.
In group 2, there were ties at 1, 2, 4, 5, 8, 11,
and 12 weeks. In any case, the sum of all the
my's in this column gives the total number of
failures in the group tabulated. This sum is
9 for group 1 and 21 for group 2.
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g;= censored in [, 7. )]
Remission Data: Group 1

l(f) me

R(tp)

l9=0
t,=6

0
=
1= 10
(=13
1= 16
f=22
fny=23

0
3
1
1

—_ = = e

21 persons survive =0 wks

21 persons survive > 6 wks

17 persons survive > 7 wks

15 persons survive > 10 wks

12 persons survive > 13 wks

11 persons survive > 16 wks

7 persons survive =22 wks

6 persons survive > 23 wks

Totals

9

Remission Data: Group 1

H*

t(weeks)

X(group)

© 0 9L AW —

MDD = = s e s e e
— S © ® 9o LA WL~ O

6
6
6
7
10
13
16
22

oS O O o o o o o

— o e e e e e e e e e e e e e e e e e e e

The third column gives frequency counts,
denoted by g5, of those persons censored in
the time interval starting with failure time #
up to the next failure time denoted ¢, 1). Tech-
nically, because of the way we have defined this
interval in the table, we include those persons
censored at the beginning of the interval.

For example, the remission data, for group 1
includes 5 nonzero ¢’s: g1 =1, g, = 1, g5 = 2,
gs = 3, g7 = 5. Adding these values gives us
the total number of censored observations for
group 1, which is 12. Moreover, if we add the
total number of ¢’s (12) to the total number of
m’s (9), we get the total number of subjects in
group 1, which is 21.

We now focus on group 1 to look a little closer
at the ¢’s. At the left, we list the unordered
group 1 information followed (on the next
page) by the ordered failure time information.
We will go back and forth between these two
tables (and pages) as we discuss the ¢’s. Notice
that in the table here, one person, listed as #10,
was censored at week 6. Consequently, in the
table at the top of the next page, we have g, = 1,
which is listed on the second line corres-
ponding to the ordered failure time #(;), which
equals 6.

The next g is a little trickier, it is derived from
the person who was listed as #11 in the table
here and was censored at week 9. Correspond-
ingly, in the table at the top of the next page,
we have g, = 1 because this one person was
censored within the time interval that starts at
the second ordered failure time, 7 weeks, and
ends just before the third ordered failure time,
10 weeks. We have not counted person #12
(who was censored at week 10) here because
this person’s censored time is exactly at the end
of the interval. We count this person in the
following interval.
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EXAMPLE: (continued)

Introduction to Survival Analysis

Group 1 using ordered failure times

i

mg gg

R(tp)

(19=0

0

21 persons survive >0 wks)

= 6

o= 7

f3=10
fp=13
15=16
i =22
17=23

3
1
1
1
1
1
1

0

©)

@
0
3
0
s

21 persons survive > 6 wks

17 persons survive > 7 wks

15 persons survive > 10 wks
12 persons survive > 13 wks
11 persons survive > 16 wks
7 persons survive =22 wks
6 persons survive > 23 wks

Totals

EXAMPLE

9

12

Risk Set: R(tp) is the set of individual
for whom

Remission Data: Group 1

{0)

OB )

R(1)

Lo =©
’(1)=©
)= 7

ay= 10
(=13
(5= 16
o= 22
=23

0
3
1

0
1
1

wm O W O

21 persons survive > 0 wks
1 persons survive > 6 wk

17 persons survive > 7 wks

15 persons survive > 10 wks
12 persons survive > 13 wks
11 persons survive > 16 wks
7 persons survive > 22 wks

6 persons survive > 23 wks

Totals

S|l = = = = =

We now consider, from the table of unordered
failure times, person #12 who was censored at
10 weeks, and person #13, who was censored
at 11 weeks. Turning to the table of ordered
failure times, we see that these two times are
within the third ordered time interval, which
starts and includes the 10-week point and ends
just before the 13th week. As for the remaining
q'’s, we will let you figure them out for practice.

One last point about the ¢ information. We
inserted a row at the top of the data for each
group corresponding to time 0. This insertion
allows for the possibility that persons may be
censored after the start of the study but before
the first failure. In other words, it is possible
that g may be nonzero. For the two groups in
this example, however, no one was censored
before the first failure time.

The last column in the table gives the “risk
set.” The risk set is not a numerical value or
count but rather a collection of individuals.
By definition, the risk set R(¢() is the collection
of individuals who have survived at least to
time ¢¢); that is, each person in R(¢y) has a
survival time that is #¢, or longer, regardless
of whether the person has failed or is censored.

For example, we see that at the start of the
study everyone in group 1 survived at least
0 weeks, so the risk set at time 0 consists of
the entire group of 21 persons. The risk set at
6 weeks for group 1 also consists of all 21 per-
sons, because all 21 persons survived at least as
long as 6 weeks. These 21 persons include the
3 persons who failed at 6 weeks, because
they survived and were still at risk just up to
this point.
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EXAMPLE: (continued)

0 me gp R(t(p)
toy=0 :t;>< 21 persons survive >0 wks
=6 21 persons survive > 6 wks

iy =0 17 persons survive > 7 wks

1
{3=10 1 15 persons survive > 10 wks
ty=13 1
{5=16 1

1
1

12 persons survive > 13 wks
11 persons survive > 16 wks
=22
ty=23

7 persons survive =22 wks

[ = e S

6 persons survive > 23 wks

Totals 9 12

=0 0/ 21 persons survive >0 wks

0
ty=6 3 21 persons survive > 6 wks
=1 1 1 17 persons survive > 7 wks
t3=10 1 2\ 15 persons survive > 10 wks
Yy =@ 1 0 2 persons survive > 13 wks
f5=16 1 3| 11 persons survive > 16 wks
te=22 1 0 7 persons survive =22 wks
tqp=23 15 6 persons survive > 23 wks

Totals

N=]
—_
S

How we work with censored
data: Use all information up to
time of censorship; don’t throw
away information.

Now let’s look at the risk set at 7 weeks. This set
consists of 17 persons in group 1 that survived
at least 7 weeks. We omit everyone in the X-ed
area. Of the original 21 persons, we therefore
have excluded the three persons who failed at
6 weeks and the one person who was censored
at 6 weeks. These four persons did not survive
at least 7 weeks. Although the censored person
may have survived longer than 7 weeks, we
must exclude him or her from the risk set at
7 weeks because we have information on this
person only up to 6 weeks.

To derive the other risk sets, we must exclude
all persons who either failed or were censored
before the start of the time interval being con-
sidered. For example, to obtain the risk set at
13 weeks for group 1, we must exclude the five
persons who failed before, but not including,
13 weeks and the four persons who were
censored before, but not including, 13 weeks.
Subtracting these 9 persons from 21, leaves
12 persons in group 1 still at risk for getting
the event at 13 weeks. Thus, the risk set con-
sists of these 12 persons.

The importance of the table of ordered failure
times is that we can work with censored obser-
vations in analyzing survival data. Even though
censored observations are incomplete, in that
we don’t know a person’s survival time exactly,
we can still make use of the information we
have on a censored person up to the time
we lose track of him or her. Rather than simply
throw away the information on a censored
person, we use all the information we have on
such a person up until time of censorship.
(Nevertheless, most survival analysis techni-
ques require a key assumption that censoring
is independent, i.e., censored subjects are not
at increased risk for failure. See Chap. 9 on
competing risks for further details.)
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p M gy R(t )

6 3 1 v 21 persons

7 1 1 v 17 persons
10 1 2 v 15 persons
13 1 0 v 12 persons
16 1 ©) v 11 persons
22 1 0 7 persons
23 1 5 6 persons

For example, for the three persons in group 1
who were censored between the 16th and 22nd
weeks, there are at least 16 weeks of survival
information on each that we don’t want to lose.
These three persons are contained in all risk
sets up to the 16th week; that is, they are each
at risk for getting the event up to 16 weeks. Any
survival probabilities determined before, and
including, 16 weeks should make use of data
on these three persons as well as data on other
persons at risk during the first 16 weeks.

Having introduced the basic terminology and
data layouts to this point, we now consider
some data analysis issues and some additional
applications.

VII. Descriptive

Measures of Survival

Experience

EXAMPLE

Remission times (in weeks) for two
groups of leukemia patients

Group 1 Group 2
(Treatment) n = 21 (Placebo) n = 21
6,6,6,7,10, 1,1,2,2,3,
13, 16, 22, 23, 4,4,5,5,
6+, 9+, 10+, 11+, 88,838,
17+, 19+, 20+, 11, 11, 12, 12,
25+, 32+, 32+, 15, 17, 22, 23
34+, 35+
T, (ignoring +’s) = 17.1 T, =8.6
— 9 = 21
h1=ﬁ='025 h2=m=.115

Average hazard rate (h) = %

i

We first return to the remission data, again
shown in untabulated form. Inspecting the
survival times given for each group, we can
see that most of the treatment group’s times
are longer than most of the placebo group’s
times. If we ignore the plus signs denoting
censorship and simply average all 21 survival
times for each group we get an average,
denoted by T “bar,” of 17.1 weeks survival for
the treatment group and 8.6 weeks for the
placebo group. Because several of the treat-
ment group’s times are censored, this means
that group 1’s true average is even larger than
what we have calculated. Thus, it appears from
the data (without our doing any mathematical
analysis) that, regarding survival, the treat-
ment is more effective than the placebo.

As an alternative to the simple averages that
we have computed for each group, another
descriptive measure of each group is the
average hazard rate, denoted as h “bar.” This
rate is defined by dividing the total number
of failures by the sum of the observed survival
times. For group 1, & “bar” is 9/359, which
equals .025. For group 2, & “bar” is 21/182,
which equals. 115.
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=

Placebo hazard > treatment haz-
ard: suggests that treatment is

©

‘_

more effective than placebo

Descriptive measures (T and &) give
overall comparison; they do not

give comparison over time.

EXAMPLE

1

S(7)

Group 1
treatment

S5 »> »
Group 2
placebo
0 ' v, ' vl
10 20
t weeks
Median = 8 Median = 23

As previously described, the hazard rate indi-
cates failure potential rather than survival
probability. Thus, the higher the average haz-
ard rate, the lower is the group’s probability of
surviving.

In our example, the average hazard for the
treatment group is smaller than the average
hazard for the placebo group.

Thus, using average hazard rates, we again see
that the treatment group appears to be doing
better overall than the placebo group; that is,
the treatment group is less prone to fail than
the placebo group.

The descriptive measures we have used so
far—the ordinary average and the hazard rate
average—provide overall comparisons of the
treatment group with the placebo group.
These measures don’t compare the two groups
at different points in time of follow-up. Such a
comparison is provided by a graph of survivor
curves.

Here we present the estimated survivor
curves for the treatment and placebo groups.
The method used to get these curves is called
the Kaplan—-Meier method, which is described
in Chap. 2. When estimated, these curves are
actually step functions that allow us to com-
pare the treatment and placebo groups over
time. The graph shows that the survivor func-
tion for the treatment group consistently lies
above that for the placebo group; this dif-
ference indicates that the treatment appears
effective at all points of follow-up. Notice, how-
ever, that the two functions are somewhat
closer together in the first few weeks of fol-
low-up, but thereafter are quite spread apart.
This widening gap suggests that the treatment
is more effective later during follow-up than
it is early on.
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A

=

Median (treatment) = 23 weeks

Median

Median (placebo) = 8 weeks

X

Introduction to Survival Analysis

Also notice from the graph that one can obtain
estimates of the median survival time, the time
at which the survival probability is.5 for each
group. Graphically, the median is obtained by
proceeding horizontally from the 0.5 point on
the Y-axis until the survivor curve is reached,
as marked by an arrow, and then proceeding
vertically downward until the X-axis is crossed
at the median survival time.

For the treatment group, the median is 23 weeks;
for the placebo group, the median is 8 weeks.
Comparison of the two medians reinforces our
previous observation that the treatment is more
effective overall than the placebo.

VIll. Example: Extended

Remission Data

Group 1 Group 2
t (weeks) log WBC ¢ (weeks) log WBC
6 2.31 1 2.80
6 4.06 1 5.00
6 3.28 2 491
7 4.43 2 4.48
10 2.96 3 4.01
13 2.88 4 4.36
16 3.60 4 2.42
22 2.32 5 3.49
23 2.57 5 3.97
6+ 3.20 8 3.52
9+ 2.80 8 3.05
10+ 2.70 8 2.32
11+ 2.60 8 3.26
17+ 2.16 11 3.49
19+ 2.05 11 2.12
20+ 2.01 12 1.50
25+ 1.78 12 3.06
32+ 2.20 15 2.30
32+ 2.53 17 2.95
34+ 1.47 22 2.73
35+ 1.45 23 1.97

Before proceeding to another data set, we con-
sider the remission example data (Freireich
et al., Blood, 1963) in an extended form. The
table at the left gives the remission survival
times for the two groups with additional infor-
mation about white blood cell count for each
person studied. In particular, each person’s
log white blood cell count is given next to
that person’s survival time. The epidemiologic
reason for adding log WBC to the data set
is that this variable is usually considered an
important predictor of survival in leukemia
patients; the higher the WBC, the worse the
prognosis. Thus, any comparison of the
effects of two treatment groups needs to con-
sider the possible confounding effect of such
a variable.
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EXAMPLE: CONFOUNDING

Treatment group: log WBC = 1.8
Placebo group: log WBC = 4.1
Indicates confounding of treatment
effect by log WBC

Frequency
distribution

Need to adjust for imbalance in the

Treatment Placebo

\ ¥

log WBC

distribution of log WBC

EXAMPLE: INTERACTION

Highlog WBC Low log WBC

S()

Treatment S(¢)

Treatment

4

Placebo Placebo

t t

Treatment by log WBC interaction

Although a full exposition of the nature of
confounding is not intended here, we provide
a simple scenario to give you the basic idea.
Suppose all of the subjects in the treatment
group had very low log WBC, with an average,
for example, of 1.8, whereas all of the subjects
in the placebo group had very high log WBC,
with an average of 4.1. We would have to con-
clude that the results we've seen so far that
compare treatment with placebo groups may
be misleading.

The additional information on log WBC would
suggest that the treatment group is surviving
longer simply because of their low WBC and
not because of the efficacy of the treatment
itself. In this case, we would say that the treat-
ment effect is confounded by the effect of
log WBC.

More typically, the distribution of log WBC
may be quite different in the treatment group
than in the control group. We have illustrated
one extreme in the graph at the left. Even
though such an extreme is not likely, and is
not true for the data given here, the point is
that some attempt needs to be made to adjust
for whatever imbalance there is in the distribu-
tion of log WBC. However, if high log WBC
count was a consequence of the treatment,
then white blood cell count should not be con-
trolled for in the analysis.

Another issue to consider regarding the effect
of log WBC is interaction. What we mean by
interaction is that the effect of the treatment
may be different, depending on the level of log
WBC. For example, suppose that for persons
with high log WBC, survival probabilities for
the treatment are consistently higher over time
than for the placebo. This circumstance is illu-
strated by the first graph at the left. In contrast,
the second graph, which considers only per-
sons with low log WBC, shows no difference
in treatment and placebo effect over time.
In such a situation, we would say that there is
strong treatment by log WBC interaction,
and we would have to qualify the effect of the
treatment as depending on the level of log WBC.
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Need to consider:

e interaction;
e confounding.

The problem:
Compare two groups after adjusting
for confounding and interaction.

EXAMPLE

The example of interaction we just gave is but
one way interaction can occur; on the other
hand, interaction may not occur at all. As with
confounding, it is beyond our scope to provide a
thorough discussion of interaction. In any case,
the assessment of interaction is something to
consider in one’s analysis in addition to con-
founding that involves explanatory variables.

Thus, with our extended data example, the
basic problem can be described as follows: to
compare the survival experience of the two
groups after adjusting for the possible con-
founding and/or interaction effects of log WBC.

The problem statement tells us that we are now
considering two explanatory variables in our
extended example, whereas we previously con-
sidered a single variable, group status. The
data layout for the computer needs to reflect
the addition of the second variable, log WBC.
The extended table in computer layout form is
given at the left. Notice that we have labeled the
two explanatory variables X; (for group status)
and X, (for log WBC). The variable X; is our
primary study or exposure variable of interest
here, and the variable X, is an extraneous vari-
able that we are interested in accounting for
because of either confounding or interaction.



Analysis alternatives:

e stratify on log WBC;
e use math modeling, e.g.,
proportional hazards model.
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As implied by our extended example, which
considers the possible confounding or inter-
action effect of log WBC, we need to consider
methods for adjusting for log WBC and/or
assessing its effect in addition to assessing the
effect of treatment group. The two most popu-
lar alternatives for analysis are the following:

e to stratify on log WBC and compare
survival curves for different strata; or

e to use mathematical modeling procedures
such as the proportional hazards or other
survival models; such methods will be
described in subsequent chapters.

IX. Multivariable Example

e Describes general
multivariable survival problem.

e Gives analogy to regression
problems.

EXAMPLE

13-year follow-up of fixed cohort from
Evans County, Georgia

n = 170 white males (60+4)
T = years until death
Event = death

Explanatory variables:
e exposure variable

e confounders

e interaction variables

Exposure:
Social Network Index (SNI)

e
01 2 3 4 5

Absence Excellent
of social social
network network

We now consider one other example. Our
purpose here is to describe a more general
type of multivariable survival analysis prob-
lem. The reader may see the analogy of this
example to multiple regression or even logistic
regression data problems.

We consider a data set developed from a
13-year follow up study of a fixed cohort of
persons in Evans County Georgia, during the
period 1967-1980 (Schoenbach et al., Amer. J.
Epid., 1986). From this data set, we focus on a
portion containing # = 170 white males who are
age 60 or older at the start of follow-up in 1967.

For this data set, the outcome variable is 7, time
in years until death from start of follow-up,
so the event of interest is death. Several explan-
atory variables are measured, one of which is
considered the primary exposure variable; the
other variables are considered as potential con-
founders and/or interaction variables.

The primary exposure variable is a measure
called Social Network Index (SNI). This is an
ordinal variable derived from questionnaire
measurement and is designed to assess the
extent to which a study subject has social con-
tacts of various types. With the questionnaire,
a scale is used with values ranging from 0
(absence of any social network) to 5 (excellent
social network).



34 1.

EXAMPLE: (continued)

Study goal: to determine whether SNI
is protective against death,
i.e., SNI /& = S(1) /.

Explanatory variables:

SNI Exposure variable
AGE
SBP
CHR Potential confounders/
QUET interaction variables
SOCL
Wei
Note: QUET = e'1ght x 100
(height)
The problem:

To describe the relationship between
SNI and time to death, after
controlling for AGE, SBP, CHR,
QUET, and SOCL.

Goals:

e Measure of effect (adjusted)

e Survivor curves for different SNI
categories (adjusted)

e Decide on variables to be
adjusted; determine method of
adjustment

Introduction to Survival Analysis

The study’s goal is to determine whether one’s
social network, as measured by SNI, is protec-
tive against death. If this study hypothesis is
correct, then the higher the social network
score, the longer will be one’s survival time.

In evaluating this problem, several explanatory
variables, in addition to SNI, are measured at
the start of follow-up. These include AGE, sys-
tolic blood pressure (SBP), an indicator of the
presence or absence of some chronic disease
(CHR), body size as measured by Quetelet’s
index (QUET = weight over height squared
times 100), and social class (SOCL).

These five additional variables are of interest
because they are thought to have their own
special or collective influence on how long a
person will survive. Consequently, these vari-
ables are viewed as potential confounders and/
or interaction variables in evaluating the effect
of social network on time to death.

We can now clearly state the problem being
addressed by this study: To describe the rela-
tionship between SNI and time to death,
controlling for AGE, SBP, CHR, QUET, and
SOCL.

Our goals in using survival analysis to solve
this problem are as follows:

e to obtain some measure of effect that will
describe the relationship between SNI and
time until death, after adjusting for the
other variables we have identified;

e to develop survival curves that describe the
probability of survival over time for differ-
ent categories of social networks; in partic-
ular, we wish to compare the survival of
persons with excellent networks to the sur-
vival of persons with poor networks. Such
survival curves need to be adjusted for the
effects of other variables.

e to achieve these goals, two intermediary
goals are to decide which of the additional
variables being considered need to be
adjusted and to determine an appropriate
method of adjustment.
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The computer data layout for this problem is
given below. The first column lists the 170 indi-
viduals in the data set. The second column lists
the survival times, and the third column lists
failure or censored status. The remainder of
the columns list the 6 explanatory variables of
interest, starting with the exposure variable
SNI and continuing with the variables to be
accounted for in the analysis.

Computer layout: 13-year follow-up study (1967-1980) of a fixed cohort of n = 170
white males (60+) from Evans County, Georgia

# t d SNI AGE SBP CHR QUET SOCL

1 tHo d SNI,  AGE, SBP, CHR, QUET, SOCL,
t+ d» SN, AGE,  SBP, CHR, QUET, SOCL,

170 t170 d17() SN1170 AGE170 SBP170 CHR17() QUET170 SOCL170

X. Math Models in It is beyond the scope of this presentation to
Survival Analysis provide specific details of the survival analysis

of these data. Nevertheless, the problem

addressed by these data is closely analogous

General framework to the typical multivariable problem addressed
by linear and logistic regression modeling.
Regardless of which modeling approach is cho-
sen, the typical problem concerns describing

E b the relationship between an exposure variable

(e.g., E) and an outcome variable (e.g., D) after

controlling for the possible confounding and

Controlling for Cy, C3, ... C,. interaction effects of additional variables (e.g.,
Cy, C3, and so on up to C,). In our survival

SNI study: analysis example, E is the social network vari-
E = SNI = D = survival time able SNI, D is the survival time variable, and
Controlling for AGE, SBP, CHR, there are p = 5 C variables, namely, AGE, SBP,

QUET, and SOCL CHR, QUET, and SOCL.
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Model Outcome

i Survival analysis | Time to event
8 (with censoring)
o

k=]
§ &:’ Linear regression | Continuous (SBP)
o ot ;
; s Logistic regression Dichotomous
IS (CHD yes/no)
L

Measure of effect:

Linear regression:
regression coefficient 8

Logistic regression:
odds ratio e”

Survival analysis:
hazard ratio e?

EXAMPLE

SNI study: hazard ratio (HR)
describes relationship between SNI
and 7, after controlling for covariates.

Nevertheless, an important distinction among
modeling methods is the type of outcome vari-
able being used. In survival analysis, the out-
come variable is “time to an event,” and there
may be censored data. In linear regression
modeling, the outcome variable is generally
a continuous variable, like blood pressure. In
logistic modeling, the outcome variable is a
dichotomous variable, like CHD status, yes or
no. And with linear or logistic modeling, we
usually do not have information on follow-up
time available.

As with linear and logistic modeling, one statis-
tical goal of a survival analysis is to obtain some
measure of effect that describes the exposur-
e-outcome relationship adjusted for relevant
extraneous variables.

In linear regression modeling, the measure of
effect is usually some regression coefficient f.

In logistic modeling, the measure of effect is an
odds ratio expressed in terms of an exponential
of one or more regression coefficients in the
model, for example, e to the .

In survival analysis, the measure of effect typi-
cally obtained is called a hazard ratio; as with
the logistic model, this hazard ratio is
expressed in terms of an exponential of one or
more regression coefficients in the model.

Thus, from the example of survival analysis
modeling of the social network data, one may
obtain a hazard ratio that describes the rela-
tionship between SNI and survival time (7),
after controlling for the appropriate covariates.



Interpretation of HR (like OR):

HR = 1 = no relationship

HR = 10 = exposed hazard 10
times unexposed

HR = 1/10 = exposed hazard 1/10
times unexposed
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The hazard ratio, although a different measure
from an odds ratio, nevertheless has a similar
interpretation of the strength of the effect.
A hazard ratio of 1, like an odds ratio of 1,
means that there is no effect; that is, 1 is the
null value for the exposure-outcome relation-
ship. A hazard ratio of 10, on the other hand,
is interpreted like an odds ratio of 10; that is,
the exposed group has ten times the hazard of
the unexposed group. Similarly, a hazard ratio
of 1/10 implies that the exposed group has one-
tenth the hazard of the unexposed group.

XI. Censoring
Assumptions

Three assumptions about censoring:

Independent (vs. non-independent)
censoring

Random (vs. non-random)
censoring

Non-informative (vs. informative)
censoring

Mathematic definitions have been
provided elsewhere.

Independent (vs. non-independent)
censoring

e most useful

e affects validity

Random (vs. non-random)

censoring
e more restrictive than
independent,

i.e., random = indep,
whereas indep = random.

There are three assumptions about censoring
often considered for survival data: inde-
pendent censoring, random censoring, and
non-informative censoring. Although these
assumptions have similarities, they are also
somewhat different and are often confused in
the textbook and published literature as being
interchangeable synonyms.

Mathematical definitions of independent (vs.
nonindependent), random (vs. nonrandom),
and non-informative (vs. informative) censor-
ing have been given elsewhere (Kalbfleisch
and Prentice, 1980; Klein and Moeschberger,
2003). Here, however, we prefer to provide
more intuitive definitions and examples.

The assumption of independent censoring is
the most useful of the three types for drawing
correct inferences that compare the survival
experience of two or more groups (e.g., treat-
ment vs. placebo). In particular, the presence
of non-independent censoring typically affects
the validity of one’s estimated effect. Random
censoring is a stronger assumption and more
restrictive than independent censoring.



38 1. Introduction to Survival Analysis

Random Censoring:

Failure rate
Censored Not censored

hee(t) = hxee(t)

Independent censoring:

Failure rate
Subgrp Censored Not censored

A ha ce(t) = ha nce(t)
B hg ce(t) = hg nee(t)

EXAMPLE

Group A

Time # atrisk # events # survived
0-3yrs 100 20 30
3-yr risk = 20/100 = 0.20
3-yr survival = 80/100 =0.80

Time # atrisk # events # survived

0-3 100 20 80
40 leave study
3-5 40 5 35

5-year survival?

To be more specific, random censoring essen-
tially means that subjects who are censored at
time t should be representative of all the study
subjects who remained at risk at time t with
respect to their survival experience. In other
words, the failure rate for subjects who are
censored is assumed to be equal to the failure
rate for subjects who remained in the risk set
who are not censored.

Independent censoring essentially means
that within any subgroup of interest, the subjects
who are censored at time t should be representa-
tive of all the subjects in that subgroup who
remained at risk at time t with respect to their
survival experience. In other words, censoring
is independent provided that it is random
within any subgroup of interest. We illustrate
these ideas with an example.

Suppose that we are interested in estimating
the 3-year survival (for some disease) among
those in Group A. We follow 100 individuals
intially disease free for 3 years. Over the 3-year
period, 20 contract disease. We estimate the
3-year risk of disease for those in Group A to
be 0.20 and the 3-year survival to be 0.80 (since
80 of 100 survived).

Now suppose we wish to continue the study for
another 2 years in order to estimate the 5-year
survival for Group A. We want to continue the
following for the 80 individuals who partici-
pated in the study and survived for the first
3 years. However, half or 40 of those 80 indivi-
duals refused to continue in the study and
were therefore lost to follow-up (censored). Of
the other 40 individuals who remained in the
study, 5 individuals contract the disease. With
this information, what is the estimate of the
5-year survival for Group A and under what
assumptions?



EXAMPLE: (continued)

What happened to 40 individuals who
were censored at 3 years? Don't know

Assuming indep and random censoring:
40 at risk at time 5
similar to
40 censored at time 3
ie.,
expect 5 events from 40 censored at time 3
since 5 events from 40 at risk

Estimated # of cases over 5 years:

20 + 5 + 5
first 3 years next 2 years censored cases

= 30 estimated cases from original
100 over 5 years

Estimated 5-year survival = 70/100 = 0.70

The idea:

Assume survival experience of sub-
jects censored at t is as expected if
randomly selected from subjects
who are at risk at t.

So far, there is no distinction
between independent and random
censoring.

Reason: Only considering one group
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If we know what happened to the 40 indivi-
duals who were censored at the 3-year mark,
then we could sum the total number of events
and the total number of individuals who sur-
vived (out of the original 100 at risk). Under an
assumption of independent and random
censoring, we assume that the 40 indi-
viduals who were censored were similar to
the 40 who remained at risk with respect
to their survival experience. Since 5 of the
40 who remained in the study after 3 years
contracted disease over the next 2 years, we
estimate that 5 of the 40 who were censored
also contracted the disease over the same time
period, even though their disease experience
was unobserved.

So over the course of the 5 years: 20 contracted
disease in the first 3 years, 5 were observed to
get disease after 3 years, and 5 of the censored
individuals were estimated to have contracted
disease. This yields 20 + 5 + 5 = 30 who are
estimated to have contract disease leaving 70 of
the original 100 who have survived over the
5-year period. The estimated 5-year survival
among Group A is 0.70 under the assumptions
of random and independent censoring.

The idea behind independent and random
censoring is that it is as if the subjects censored
at time t were randomly selected to be censored
from the group of subjects who were in the risk
set at time t. Even though the censored subjects
were not randomly selected, their survival
experience would be expected to be the same
as if they had been randomly selected from the
risk set at time t.

In this example, there is no distinction made
between independent censoring and random
censoring. The reason is because we are only
considering one group of individuals (i.e., there
are no predictor variables considered). The dis-
tinction comes if we consider more than one
group for comparison. We illustrate this dis-
tinction by continuing the example.
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EXAMPLE: (continued)

Group B
Time # atrisk # events # survived
0-3 100 40 60
10 leave study
3-5 50 10 40

Failure risk from 3 to 5 yrs =10/50 =
0.20.

Assuming independent censoring:
expect 0.20x 10 =2 cases
from 10 censored at time 3
Estimated # of cases over 5 years:

40 40 2
first 3 years + next 2 years censored cases
= 52 estimated cases from original
100 over 5 years
Estimated 5-year survival = 48/100 =
0.48

Groups A and B combined

Time # at risk # events # survived
A B total A B total A B total

0-3 100 100 200 20 40 60 80 60 140

40 from A and 10 from B leave study

3-5 40 50 90 5 1015 354075

{ pa(censored) = 40/80 = 0.50 or 50%

pg(censored) = 10/60 = 0.17 or 17%
pa(censored) >> pg(censored)

Group A Group B
5-yr survival 0.70 0.48

Censoring not random

Introduction to Survival Analysis

We extend the previous example to include 100
subjects from Group B who are disease free at
the start of follow-up. The goal is to estimate
their 5-year survival and compare it to the
S-year survival for Group A. Suppose over the
first 3-year period, 40 of the 100 individuals
contract disease. Then, of the 60 who survive
the first 3 years, 10 refuse to continue in the
study and are therefore censored. For the 50
who remain in the study, 10 individuals con-
tract disease by the 5" year (10 of 50 = 20%).

Under independent censoring, we estimate
that 20% or 2 of the 10 censored subjects con-
tract disease by the 5" year.

So, over the course of the 5 years among the
original 100 in Group B: 40 contracted disease
in the first 3 years, 10 were observed to get
disease after 3 years, and 2 of the censored
individuals were estimated to the contracted
disease. This yields 40 + 10 + 2 = 52 who are
estimated to have contracted disease, leaving
48 of the original 100 who survived over the
5-year period. The estimated 5-year survival
among Group B is 0.48 under the assumptions
of independent censoring.

Over all, combining both groups, there were
200 originally at risk of whom 60 contracted
disease within the first 3 years (20 from Group
A and 40 from Group A) leaving 140 who have
survived for the first 3 years (80 from Group A
and 60 from Group B). At the 3-year mark, 50
subjects were censored (40 in Group A and 10
in Group B).

A much higher proportion of censoring
occurred in Group A (i.e., 40/80 = 0.50) than
in Group B (i.e., 10/60 = 0.17).

Moreover, subjects in Group A had a higher
survival probability than those in Group B.

Therefore, the censoring was not random.



EXAMPLE (continued)

Random censoring
within Group A and within Group B

Independent censoring
(i.e., random censoring conditional on
covariates)

Nevertheless,
(overall) random censoring not met

ALTERNATIVE EXAMPLE

# at risk # events  # survived
A B total A B total A B total
0-3 100 100 200 20 40 60 80 60 140
40 from A and 30 from B leave study
35 40 30 70 5 1015 352055

pa(censored) = 40/80 = 0.50 or 50%
pe(censored) = 30/60 = 0.50 or 50%

pa(censored) = pg(censored)

Time

Random censoring (overall)

Non-informative censoring depends

on

e distribution of time-to-event

e distribution of time-to-
censorship

Time-to-event random variable (T):

Distribution of survival times

assuming:

e 1o loss-to-follow-up

e study continues until all
subjects get event

Time-to-censorship random vari-
able (C):
Distribution of censoring times

assuming:
e study ends before all subjects
get event

e censored subjects do not get
event prior to the end of study
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However, conditional on each level of covari-
ates (conditional on group status in this exam-
ple), the censoring was random. Therefore, the
censoring was independent because indepen-
dent censoring is random censoring condi-
tional on each level of covariates.

Nevertheless, the random censoring assump-
tion was not met overall because the censored
individuals were not representative of all who
remained in the risk set at time t with respect to
the rate of failure.

If instead in the previous example, suppose 40
of 80 from Group A and 30 of 60 from Group B
were censored at the 3-year mark, as shown in

the table on the left.

Then the censoring would have been random
because an equal proportion of Group A and
Group B would have been censored from the
risk set and those censored would be represen-
tative of those who remained at risk.

We next consider the assumption of non-
informative censoring. Whether censoring is
non-informative or informative depends on
two distributions: (1) the distribution of the
time-to-event random variable and (2) the distri-
bution of time-to-censorship random variable.

We can conceptualize the distribution for the
time-to-event random variable by considering
the distribution of survival times if there was
no loss to follow-up and the study did not end
until all subjects got the event.

Similarly, we can conceptualize a time-to-
censorship random variable by considering
the distribution of censoring times for those
subjects who would not have gotten the event
if the study ended before all subjects got the
event.
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Non-informative censoring:

no information

T distribution &  Cdistribution

Note: must still need to know which
subjects are censored or not cen-
sored.

Non-informative e Often all
Independent justifiable
Random together
e Not all
equivalent

EXAMPLE: Independent and random

but informative
censoring

Subject A gets event

3
Subject B (randomly selected)
gets event, e.g., family member
of Subject A leaves study

Assume: censored subjects represent
subjects at risk at any time

Then

e independent and random
censoring

e informative censoring since
T = C. (i.e., T distribution
specifies C distribution)

Non-informative censoring occurs if the dis-
tribution of survival times (T) provides no
information about the distribution of censor-
ship times (C), and vice versa. Otherwise, the
censoring is informative. Note, however, that
the data must still identify which subjects are
or are not censored.

The assumption of non-informative censoring
is often justifiable when censoring is indepen-
dent and/or random; nevertheless, these three
assumptions are not equivalent.

To illustrate how independent censoring could
be different from non-informative censoring,
we describe an artificial example where the
censoring is informative but also random and
independent.

Suppose every time an individual gets an event,
another individual in the study is randomly
selected to leave the study, e.g., after an event,
a family member decides to leave the study.
If those censored were representative of those
who remained in the risk set, then the cen-
soring would be random and independent.
However, the censoring would also be infor-
mative as the censoring mechanism would
be related to the time-to-event distribution
(since events cause censorships). In fact, if this
was the only mechanism in which individuals
were censored, the distribution of survival
times would completely specify the distribu-
tion of censoring times (highly informative).



EXAMPLE: Not independent

censoring

e Drug side effect causes censoring

e Censored subjects not
representative of subjects still at
risk

e Censored subjects more
vulnerable than subjects still at
risk

4
Assuming independent censoring
would overestimate survival

Independent censoring most
relevant: affects validity
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To see how bias can occur if the censoring is
not independent, consider a drug study in
which some individuals are censored from the
study due to the occurrence of some side
effects. It may be that the unobserved survival
experience among those who are censored due
to a drug side effect is not representative of
those who remained in the study. If those
with a side effect are more vulnerable to the
health outcome, then we would likely overesti-
mate their survival with an assumption of inde-
pendent censoring.

Many of the analytic techniques discussed in
the chapters that follow Kaplan—-Meier survival
estimation, the log rank test, and the Cox
model, rely on an assumption of independent
censoring for valid inference in the presence of
right-censored data.

Chapters

Ve (1. Introduction}
2.

Kaplan-Meier Survival
Curves and the Log-Rank
Test

This presentation is now complete. We suggest
that you review the material covered here by
reading the detailed outline that follows. Then
do the practice exercises and test.

In Chap. 2 we describe how to estimate and
graph survival curves using the Kaplan-Meier
(KM) method. We also describe how to test
whether two or more survival curves are esti-
mating a common curve. The most popular
such test is called the log-rank test.
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Detailed

Outline

I. What is survival analysis? (pages 4-5)

A.

B.

Type of problem addressed: outcome variable is
time until an event occurs.

Assume one event of interest; more than one
type of event implies a competing risk problem.

Terminology: time = survival time; event =
failure.

Examples of survival analysis:
i. leukemia patients/time in remission
ii. disease-free cohort/time until heart disease
iii. elderly population/time until death
iv. parolees/time until rearrest (recidivism)
v. heart transplants/time until death

II. Censored data (pages 5-8)

A.
B.

C.

Definition: don’t know survival time exactly.

Typical reasons: study ends, loss to follow-up,
withdrawal from study.

Example that illustrates (right-) censoring.

Right-censoring: true survival time is equal to
or greater than observed survival times.

Left-censoring: true survival time is less than or
equal to observed survival time

Interval-censoring: true survival time is within a
known time interval (t1, t2)

Interval-censoring incorporates right- and left-
censoring as special cases, i.e.,

right-censoring = t; =lower bound, t,=oc;
left-censoring = t;=0, t,=upper bound.

III. Terminology and notation (pages 9-15)

A.

B.

C.

Notation: T = survival time random variable:
t = specific value for T
d = (0-1) variable for failure/censor-
ship status
Terminology: S(¢) = survivor function
h(t) = hazard function

Properties of survivor function:

e theoretically, graph is smooth curve,
decreasing from S(f) = 1 at time t = 0 to
S(t)=0att=ooc;

e in practice, graph is step function that may
not go all the way to zero at end of study if
not everyone studied gets the event.
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Hazard function formula:

Pt<T<t+AdT >t
he) = lim PUST <+ AT 20
Ar—0 At
Hazard function properties:

e (1) gives instantaneous potential for event
to occur given survival up to time z;

e instantaneous potential idea is illustrated by
velocity;

e hazard function also called “conditional
failure rate”;

e () > 0; has no upper bound; not a proba-
bility; depends on time units.

Examples of hazard curves:
i. exponential
ii. increasing Weibull
iii. decreasing Weibull
iv. log normal
Uses of hazard function:
e gives insight about conditional failure rates;
e identifies specific model form;

e math model for survival analysis is usually
written in terms of hazard function.

Relationship of S(¢) to h(¢): if you know one,
you can determine the other:

e example: i(t) = A if and only if S(r) =e ™™
e general formulae:

S(t) = exp {— /Oth(u)du]

IV. Goals of survival analysis (page 16)

A.

B.
C.

Estimate and interpret survivor and/or hazard
functions.

Compare survivor and/or hazard functions.

Assess the relationship of explanatory variables
to survival time.
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V. Basic data layout for computer (pages 16-23)
A. General layout:

4+ d X, Xp...X

1 1 dl Xll X12...X1p
2 tr d2 X21 X22 R sz

n t, dn an an. . X,

Anp

B. Example: Remission time data

C. Alternative Data Layout for Computer: Couuting
Process (Start, Stop) Format

e Useful for more complicated survival analysis:
i. Age-at-follow-up as time scale (Chapter 3)
ii. Time-dependent variables (Chapter 6)
iii. Recurrent events (Chapter 7)
e CP data layout

TGP
Data Layoit Cp JApproach
Pjody G0t Xy Xy
1 dy tyo tyy Xpppocee Xi1p
Subject< 1 2 dip gty Xpyy e Xigp
1 : : H : : H :
Uorpodig tiego G X oo Xy
i1 dyp ty G Xy oo Xy
Subject < 1 2 dn tao  tar Xiy v Xigp
i i3 H : H H H
1 1 du,] tlno t“‘ul X"‘] . X,,‘p
n 1 dy tao tar Xan s Xap
Subject< 1 2 Aot Gr Xazp eee X
n I H : : : :
0y dy bt Xagt eee Xanp




Detailed Outline 47

e Simplest CP format: 1 dataline subject

, ~

ij dy E Gio  tijt E Xiit - Xjjp
i |
1 1 dy 1 0 5} i X oo Xip
- | : :
Do ! : :
i 14y E 0 t E X o Xipp
: Do Do :
: . o
n 1 dnl : 0 tn }: anl e anp

e Example from Remission Time Dataset

e Example from Study of Recurrent Bladder
Cancer Tumors (Byar, 1980; Wei, Lin, and
Weisfeld, 1989)

e Computer Appendix gives programming
code

VI. Basic data layout for understanding analysis
(pages 23-28)
A. General layout:

Ordered # of # censored
failure times failures in [¢(, #(-11)) Risk set
(tp) (mp) (gp) R(t )
toy=0 mo =0 9o R(t()
L m; q1 R(t(l))
t2) m> q2 R(12))
Lk o qr R(tq)

Note: k = # of distinct times at which subjects failed; n =
# of subjects (k < n); R(ty), the risk set, is the set of
individuals whose survival times are at least ¢ or larger.

B. Example: Remission time data
Group 1 (n = 21, 9 failures, k = 7);
Group 2 (n = 21, 21 failures, k = 12)

C. How to work with censored data:

Use all information up to the time of censor-
ship; don’t throw away information.

VII. Descriptive measures of survival experience
(pages 28-30)
A. Average survival time (ignoring censorship

status):

n T underestimates the true average
B ; li survival time, because censored
T=25 times are included in the formula.
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1.

Introduction to Survival Analysis

B.

C.

Average hazard rate:

# failures

h= -
.l
i=1
Descriptive measures T and % give overall com-
parison; estimated survivor curves give compar-
ison over time.

Estimated survivor curves are step function
graphs.

Median survival time: graphically, proceed hor-
izontally from 0.5 on the Y-axis until reaching
graph, then vertically downward until reaching
the X-axis.

VIII. Example: Extended remission data (pages 30-33)

A.

B.
C.

Extended data adds log WBC to previous remis-
sion data.

Need to consider confounding and interaction.

Extended data problem: compare survival expe-

rience of two groups, after adjusting for con-

founding and interaction effects of log WBC.

Analysis alternatives:

i. stratify on log WBC and compare survival

curves for different strata;

ii. use math modeling, e.g., proportional
hazards model.

IX. Multivariable example (pages 33-35)

A.

The problem: to describe the relationship
between social network index (SNI) and time
until death, controlling for AGE, systolic blood
pressure (SBP), presence or absence of chronic
disease (CHR), Quetelet’s index (QUET - a
measure of body size), and social class (SOCL).

Goals:

e to obtain an adjusted measure of effect;

e to obtain adjusted survivor curves for differ-
ent SNI categories;

e to decide on variables to be adjusted.

The data: 13-year follow-up study (1967-1980)

of a fixed cohort of n = 170 white males (60+)

from Evans County, Georgia.
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X. Math models in survival analysis (pages 35-37)

A. Survival analysis problem is analogous to typi-
cal multivariable problem addressed by linear
and/or logistic regression modeling: describe
relationship of exposure to outcome, after
accounting for possible confounding and inter-
action.

B. Outcome variable (time to event) for survival
analysis is different from linear (continuous)
or logistic (dichotomous) modeling.

C. Measure of effect typically used in survival anal-
ysis: hazard ratio (HR).

D. Interpretation of HR: like OR. SNI study: HR
describes relationship between SNI and 7, after
controlling for covariates.

XI. Censoring assumptions (pages 37-43)
A. Three different assumptions about censoring:
i. Independent (vs. Non-independent) censoring

a. most useful- concerns validity of
estimated effect

ii. Random (vs. Non-random) censoring

a. more restrictive than independent
censoring

iii. Non-informative (vs. Informative) censoring

a. typically affects efficiency of estimated
effect

B. Examples.
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Practice
Exercises

True or False (Circle T or F):

T F
T F
T F
T F
T F
T F
T F
T F
T F
T F
T F
T F
T F
T F
T F

10.

11.

12.

13.
14.

15.

In a survival analysis, the outcome variable is
dichotomous.

In a survival analysis, the event is usually
described by a (0, 1) variable.

If the study ends before an individual has
gotten the event, then his or her survival time
is censored.

If, for a given individual, the event occurs
before the person is lost to follow-up or with-
draws from the study, then this person’s sur-
vival time is censored.

S(t) = P(T >t) is called the hazard function.
The hazard function is a probability.
Theoretically, the graph of a survivor function
is a smooth curve that decreases from S(z) = 1
att=0to S(t) =0att = oo.

The survivor function at time ¢ gives the instan-
taneous potential per unit time for a failure to
occur, given survival up to time .

The formula for a hazard function involves a
conditional probability as one of its compo-
nents.

The hazard function theoretically has no upper
bound.

Mathematical models for survival analysis
are frequently written in terms of a hazard
function.

One goal of a survival analysis is to compare
survivor and/or hazard functions.

Ordered failure times are censored data.
Censored data are used in the analysis of sur-
vival data up to the time interval of censorship.
A typical goal of a survival analysis involving
several explanatory variables is to obtain an
adjusted measure of effect.
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16. Given the following survival time data (in weeks) for
n = 15 subjects,
1,1, 14, 1+, 14, 2, 2, 2, 2+, 24, 3, 3, 34, 4+, 5+
where + denotes censored data, complete the following
table:

100 my qar R(t(p)

0 0 0 15 persons survive > 0 weeks
1

2

3

Also, compute the average survival time (T) and the
average hazard rate (h) using the raw data (ignoring +
signs for T).

17. Suppose that the estimated survivor curve for the
above table is given by the following graph:

I —
1 -

S(r)

1
0 1 2 3
t

What is the median survival time for this cohort?

Questions 18-20 consider the comparison of the fol-
lowing two survivor curves:

1 m
H Group A

N0G) -ee

18. Which group has a better survival prognosis before
time ¢*?

19. Which group has a better survival prognosis after
time ¢*?

20. Which group has a longer median survival time?
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Test

Introduction to Survival Analysis

True or False (Circle T or F):

T F
T F
T F
T F
T F
T F
T F
T F
T F
T F
T F
T F
T F
T F
T F

1.

10.

11.

12.

13.

14.

15.

Survival analysis is a collection of statistical
procedures for data analysis for which the out-
come variable is time until an event occurs.
In survival analysis, the term “event” is synon-
ymous with “failure.”

If a given individual is lost to follow-up or with-
draws from the study before the end of the
study without the event occurring, then the
survival time for this individual is said to be
“censored.”

In practice, the survivor function is usually
graphed as a smooth curve.

The survivor function ranges between 0 and co.
The concept of instantaneous potential is illu-
strated by velocity.

A hazard rate of one per day is equivalent to
seven per week.

If you know the form of a hazard function, then
you can determine the corresponding survivor
curve, and vice versa.

One use of a hazard function is to gain insight
about conditional failure rates.

If the survival curve for group 1 lies completely
above the survival curve for group 2, then the
median survival time for group 2 is longer than
that for group 1.

The risk set at 6 weeks is the set of individuals
whose survival times are less than or equal to
6 weeks.

If the risk set at 6 weeks consists of 22 persons,
and 4 persons fail and 3 persons are censored
by the 7th week, then the risk set at 7 weeks
consists of 18 persons.

The measure of effect used in survival analysis
is an odds ratio.

If a hazard ratio comparing group 1 relative to
group 2 equals 10, then the potential for failure
is ten times higher in group 1 than in group 2.
The outcome variable used in a survival analy-
sis is different from that used in linear or logis-
tic modeling.

16. State two properties of a hazard function.

17. State three reasons why hazard functions are used.

18. State three goals of a survival analysis.
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19. The following data are a sample from the 1967-1980
Evans County study. Survival times (in years) are
given for two study groups, each with 25 participants.
Group 1 has no history of chronic disease (CHR = 0),
and group 2 has a positive history of chronic disease
(CHR = 1):

Group 1 (CHR =0): 12.3+,5.4,8.2,12.2+,11.7, 10.0,
5.7,9.8,2.6,11.0,9.2,12.1+, 6.6,
2.2,1.8,10.2,10.7, 11.1, 5.3, 3.5,
9.2,25,8.7,3.8,3.0

Group 2 (CHR =1): 5.8,2.9,84,8.3,9.1,4.2,4.1, 1.8,
3.1,11.4,2.4,14,5.9, 1.6, 2.8,
49,3.5,6.5,9.9,3.6,5.2,88,7.8,
4.7, 3.9

For group 1, complete the following table involving
ordered failure times:

Ly my gy R(t(p)

Group1: 0.0 0 O 25 persons survived > 0 years
1.8 1 0 25 persons survived > 1.8 years
2.2
25
2.6
3.0
3.5
3.8
5.3
5.4
5.7
6.6
8.2
8.7
9.2
9.8

10.0
10.2
10.7
11.0
111
11.7
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Answers to
Practice
Exercises

20.

—

—
W N = O

14.
15.
16.

17.
18.
19.
20.

W eNoUhWwWN

For the data of Problem 19, the average survival
time (T) and the average hazard rate (k) for each
group are given as follows:

T h

Group 1: 7.5 .1165

Group 2: 5.3 .189%4

a. Based on the above information, which group has
a better survival prognosis? Explain briefly.

b. How would a comparison of survivor curves pro-
vide additional information to what is provided in
the above table?

F: the outcome is continuous; time until an event

occurs.

T

T

F: the person fails, i.e., is not censored.

F: S(¢) is the survivor function.

F: the hazard is a rate, not a probability.

T

F: the hazard function gives instantaneous potential.

T

T

T

T

F: ordered failure times are data for persons who are

failures.

T

T

Lo mpe gy R(t ()

0 0 0 15 persons survive > 0 weeks

1 2 3 15 persons survive > 1 weeks

2 3 2 10 persons survive > 2 weeks

3 2 3 5 persons survive > 3 weeks

= 33 - 7
T:E:ZZ,; h:§:0.22

Median = 3 weeks

Group A

Group B

Group A
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Introduction

Abbreviated
Outline

We begin with a brief review of the purposes of survival
analysis, basic notation and terminology, and the basic
data layout for the computer.

We then describe how to estimate and graph survival
curves using the Kaplan-Meier (KM) method. The esti-
mated survival probabilities are computed using a product
limit formula.

Next, we describe how to compare two or more survival
curves using the log-rank test of the null hypothesis of
a common survival curve. For two groups, the log-rank
statistic is based on the summed observed minus expected
score for a given group and its variance estimate. For
several groups, a computer should always be used because
the log-rank formula is more complicated mathematically.
The test statistic is approximately chi-square in large
samples with G — 1 degrees of freedom, where G denotes
the number of groups being compared.

Several alternatives to the log-rank test will be briefly
described. These tests are variations of the log rank test
that weigh each observation differently. They are also large
sample chi-square tests with G — 1 degrees of freedom.

Finally, we describe how to compute confidence intervals
for the KM curve and for the median survival time.

The outline below gives the user a preview of the material
to be covered by the presentation. A detailed outline for
review purposes follows the presentation.

I. Review (pages 58-60)
II. An example of Kaplan-Meier curves (pages 61-65)
III. General features of KM curves (pages 66—67)
IV. The log-rank test for two groups (pages 67-71)
V. The log-rank test for several groups (pages 71-73)
VI. Alternatives to the log rank test (pages 73-78)

VII. Confidence intervals for KM curves
(pages 78-79)

VIII. Confidence intervals for the median survival
time (page 80)

IX. Summary (page 81)
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Upon completing the chapter, the learner should be able to:

1.

Compute Kaplan-Meier (KM) probabilities of survival,
given survival time and failure status information on a
sample of subjects.

Interpret a graph of KM curves that compare two or
more groups.

Draw conclusions as to whether or not two or more
survival curves are the same based on computer results
that provide a log-rank test and/or an alternative test.

Decide whether the log-rank test or one of the
alternatives to this test is more appropriate for a given
set of survival data.

Compute a 95% confidence interval for a KM survival
probability.

Compute a 95% confidence interval for the median
survival time obtained from a KM curve.
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Presentation

e plot and interpret
KM survival curves

o test equivalence of
KM curves using
log-rank test

o alternative tests

® 9.5% CI for KM and

medium survival

This presentation describes how to plot and
interpret survival data using Kaplan-Meier
(KM) survival curves and how to test whether
or not two or more KM curves are equivalent
using the log-rank test. We also describe alter-
native tests to the log-rank test. Furthermore,
we provide formulae for computing 95%
confidence intervals for a KM curve and for
the median survival time.

I. Review
Start TIME Event
Event: death

disease

relapse

Time = survival time
Event = failure

Censoring: Don’t know survival
time exactly

4— True survival time ———»

| oo

Observed survival timej
Right-censored

NOTATION

T = survival time

\random variable
t = specific value for T

We begin by reviewing the basics of survival
analysis. Generally, survival analysis is a col-
lection of statistical procedures for the analysis
of data in which the outcome variable of inter-
est is time until an event occurs. By event, we
mean death, disease incidence, relapse from
remission, or any designated experience of
interest that may happen to an individual.

When doing a survival analysis, we usually
refer to the time variable as survival time. We
also typically refer to the event as a failure.

Most survival analyses consider a key data ana-
Iytical problem called censoring. In essence, cen-
soring occurs when we have some information
about individual survival time, but we don’t
know the survival time exactly.

Most survival time data is right-censored,
because the true survival time interval, which
we don’t really know, has been cut off (i.e.,
censored) at the right side of the observed
time interval, giving us an observed survival
time that is shorter than the true survival time.
We want to use the observed survival time to
draw implications about the true survival time.

As notation, we denote by a capital T the
random variable for a person’s survival time.
Next, we denote by a small letter ¢ any specific
value of interest for the variable T.



d = (0, 1) random variable

1 if failure
0 if censored

S(t) = survivor function

= Pr(T >1)
S(0)
| Theoretical S(7)
S(1)
A/S(OO)
0 t o —Pp

S() in practice

Study end

h(t) = hazard function
= instantaneous potential

given survival up to time ¢

Not failing h(t)
f i
NO) Failing
h(t) is arate: 0 to oo
S(t) h(t)
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We let d denote a (0,1) random variable
indicating either censorship or failure. A per-
son who does not fail, that is, does not get the
event during the study period, must have been
censored either before or at the end of the
study.

The survivor function, denoted by S(t), gives
the probability that the random variable T
exceeds the specified time ¢.

Theoretically, as ¢ ranges from 0 up to infinity,
the survivor function is graphed as a decreas-
ing smooth curve, which begins at S(¢) = 1 at
t = 0 and heads downward toward zero as
t increases toward infinity.

In practice, using data, we usually obtain esti-
mated survivor curves that are step functions,
as illustrated here, rather than smooth curves.

The hazard function, denoted by h(¢), gives the
instantaneous potential per unit time for
the event to occur given that the individual
has survived up to time ¢.

In contrast to the survivor function, which
focuses on not failing, the hazard function
focuses on failing; in other words, the higher
the average hazard, the worse the impact on
survival. The hazard is a rate, rather than a
probability. Thus, the values of the hazard
function range between zero and infinity.

Regardless of which function S(¢) or 4(¢) one
prefers, there is a clearly defined relation-
ship between the two. In fact, if one knows
the form of S(¢), one can derive the corres-
ponding /(t), and vice versa.
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General Data Layout:

Indiv.# ¢t d X, X...X,

1 1 dl X“ X12...X1p
2 tr dz X21 X5, ... sz
n t, dn an an . an

Alternative (ordered) data
layout:

Ordered
failure #of  #censoredin Risk
times, failures  [#), {1y, set,
o) my 4y R(t()
tioy) = 0 mo = 0 q0 R(l(o))
t1) nmy q1 R(t(l))
to) msy q>2 R([(Z))
L) mj qr R(t(k))

Table of ordered failures:

e Uses all information up to time
of censorship;
e S(¢) is derived from R(7).

Survival probability:
Use Kaplan-Meier (KM)
method.

The general data layout for a survival analysis
is given by the table shown here. The first col-
umn of the table identifies the study subjects.
The second column gives the observed survival
time information. The third column gives the
information for d, the dichotomous variable
that indicates censorship status. The remain-
der of the information in the table gives values
for explanatory variables of interest.

An alternative data layout is shown here. This
layout is the basis upon which Kaplan-Meier
survival curves are derived. The first column
in the table gives ordered survival times from
smallest to largest. The second column gives
frequency counts of failures at each distinct fail-
ure time. The third column gives frequency
counts, denoted by gy, of those persons censored
in the time interval starting with failure time
up to but not including the next failure time,
denoted by #¢1). The last column gives the
risk set, which denotes the collection of indivi-
duals who have survived at least to time ).

To estimate the survival probability at a given
time, we make use of the risk set at that time to
include the information we have on a censored
person up to the time of censorship, rather
than simply throw away all the information
on a censored person.

The actual computation of such a survival
probability can be carried out using the
Kaplan-Meier (KM) method. We introduce the
KM method in the next section by way of an
example.
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Il. An Example of
Kaplan-Meier Curves

EXAMPLE

The data: remission times (weeks) for
two groups of leukemia patients

Group 1 (n = 21)

Group 2 (n = 21)

treatment placebo
6,6,6,7, 10, 1,1,2,2,3,
13, 16, 22, 23, 4,4,5,5,

6+, 9+, 10+, 11+, | 8, 8,8, 8,
17+, 19+, 20+, 11, 11, 12, 12,
25+, 32+, 32+, 15,17, 22, 23
344, 354,

Note: + denotes censored

# failed # censored Total
Group 1 9 12 21
Group 2 21 0 21

Descriptive statistics:

Ty (ignoring +'s) = 17.1, T, = 8.6

i =025, = .

115, =2

The data for this example derive from a study
of the remission times in weeks for two groups
of leukemia patients, with 21 patients in each
group. Group 1 is the treatment group and
group 2 is the placebo group. The basic question
of interest concerns comparing the survival
experience of the two groups.

Of the 21 persons in group 1, 9 failed during the
study period and 12 were censored. In contrast,
none of the data in group 2 are censored; that
is, all 21 persons in the placebo group went out
of remission during the study period.

In Chapter 1, we observed for this data set that
group 1 appears to have better survival progno-
sis than group 2, suggesting that the treatment
is effective. This conclusion was supported by
descriptive statistics for the average survival
time and average hazard rate shown. Note,
however, that descriptive statistics provide
overall comparisons but do not compare the
two groups at different times of follow-up.



62 2. Kaplan-Meier Survival Curves and the Log-Rank Test

EXAMPLE: (continued)

A table of ordered failure times is shown here
for each group. These tables provide the basic
information for the computation of KM curves.

Each table begins with a survival time of zero,
even though no subject actually failed at the
start of follow-up. The reason for the zero is
to allow for the possibility that some subjects
might have been censored before the earliest
failure time.

Also, each table contains a column denoted as
nythat gives the number of subjects in the risk
set at the start of the interval. Given that the
risk set is defined as the collection of indivi-
duals who have survived at least to time ¢,
it is assumed that ny includes those persons
failing at time f. In other words, ny counts
those subjects at risk for failing instanta-
neously prior to time #.

We now describe how to compute the KM
curve for the table for group 2. The computa-
tions for group 2 are quite straightforward
because there are no censored subjects for
this group.

The table of ordered failure times for group
2 is presented here again with the addition of
another column that contains survival proba-
bility estimates. These estimates are the KM
survival probabilities for this group. We will
discuss the computations of these probabilities
shortly.
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EXAMPLE: (continued) A plot of' the KM survival Probal?ilitie.s
corresponding to each ordered failure time is
shown here for group 2. Empirical plots such
as this one are typically plotted as a step func-
tion that starts with a horizontal line at a sur-
vival probability of 1 and then steps down to
the other survival probabilities as we move
from one ordered failure time to another.

We now describe how the survival probabilities
for the group 2 data are computed. Recall that
a survival probability gives the probability that
a study subject survives past a specified time.

Thus, considering the group 2 data, the pro-
bability of surviving past zero is unity, as it
will always be for any data set.

Next, the probability of surviving past the
first ordered failure time of 1 week is given by
19/21 or (.90) because 2 people failed at 2 week,
so that 19 people from the original 21 remain
as survivors past 2 week.

Similarly, the next probability concerns sub-
jects surviving past 2 weeks, which is 17/21
(or. 81) because 2 subjects failed at 1 week and
2 subjects failed at 2 weeks leaving 17 out of the
original 21 subjects surviving past 2 weeks.

The remaining survival probabilities in the
table are computed in the same manner, that
is, we count the number of subjects surviving
past the specified time being considered and
divide this number by 21, the number of sub-
jects at the start of follow-up.

Recall that no subject in group 2 was censored,
so the g column for group 2 consists entirely
of zeros. If some of the ¢’s had been nonzero,
an alternative formula for computing survival
probabilities would be needed. This alterna-
tive formula is called the Kaplan-Meier (KM)
approach and can be illustrated using the
group 2 data even though all values of g are
Zero.
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KM formula = product limit

EXAMPLE

S@4) =1x

19

— X
21

17 16 14 14
—X—=X—=—=
19 17 16 21

PI‘(T>Z‘(f) TZt(f))

19
21

16
5=

= Pr(T> 1T > 1)

Pr(T > 3|T > 3)

17 = # in risk set at week 3

S(4) =1 x

S@8)=1x

19 «
21
19

ﬁX

17 16 (14)
Exﬁx

17 16 14

12

.67

17 14 12 /%)
19X17X16X14X

formula

Group 1 (treatment)

e ng mg qr S (t)
0 21 0 0 0
6 21 3 1 1 x18

For example, an alternative way to calculate
the survival probability of exceeding 4 weeks
for the group 2 data can be written using the
KM formula shown here. This formula involves
the product of conditional probability terms.
That is, each term in the product is the proba-
bility of exceeding a specific ordered failure
time ¢y given that a subject survives up to that
failure time.

Thus, in the KM formula for survival past
4 weeks, the term 19/21 gives the probability
of surviving past the first ordered failure time,
1 week, given survival up to the first week. Note
that all 21 persons in group 2 survived up to
1 week, but that 2 failed at 1 week, leaving 19
persons surviving past 1 week.

Similarly, the term 16/17 gives the probability
of surviving past the third ordered failure time
at week 3, given survival up to week 3. There
were 17 persons who survived up to week 3 and
1 of these then failed, leaving 16 survivors past
week 3. Note that the 17 persons in the deno-
minator represents the number in the risk set
at week 3.

Notice that the product terms in the KM for-
mula for surviving past 4 weeks stop at the 4th
week with the component 14/16. Similarly, the
KM formula for surviving past 8 weeks stops
at the eighth week.

More generally, any KM formula for a survival
probability is limited to product terms up to
the survival week being specified. That is
why the KM formula is often referred to as a
“product-limit” formula.

Next, we consider the KM formula for the data
from group 1, where there are several censored
observations.

The estimated survival probabilities obtained
using the KM formula are shown here for
group 1.

The first survival estimate on the list is S(0) — 1,
as it will always be, because this gives the prob-
ability of surviving past time zero.
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EXAMPLE: (continued)

Group 1 (treatment)

ty np mp oqr S(tp)

0210 o (D

6 21 3 1 1x = 8571
YA
7 17 1 1 8571x = .8067

10 15 1 2 .8067 x i—: =.7529

13 12 1 0 7529 x % = .6902

16 11 1 3 .6902 x % = .6275

22 7 1 0  .6275 x g = .5378

23 6 1 5 5378 x % = .4482

Fraction at t): Pr(T > L | T> l‘(f))

Not available at #):failed prior to #,
or
censored prior to /7

g

group | only

KM Plots for Remission Data

—

o
)

Group 1 (treatment)

=
=N

=
~

Group 2 (placebo)

=
o

ST e

(=

Obtain KM plots from

computer package, e.g., SAS,
Stata,
SPSS
R

The other survival estimates are calculated by
multiplying the estimate for the immediately
preceding failure time by a fraction. For exam-
ple, the fraction is 18/21 for surviving past
week 6, because 21 subjects remain up to
week 6 and 3 of these subjects fail to survive
past week 6. The fraction is 16/17 for surviving
past week 7, because 17 people remain up to
week 7 and 1 of these fails to survive past week 7.
The other fractions are calculated similarly.

For a specified failure time ¢y, the fraction may
be generally expressed as the conditional prob-
ability of surviving past time ¢, given avail-
ability (i.e., in the risk set) at time #¢). This
is exactly the same formula that we previously
used to calculate each product term in the pro-
duct limit formula used for the group 2 data.

Note that a subject might not be available at
time ¢ for one of two reasons: (1) either the
subject has failed prior to ¢, or (2) the subject
has been censored prior to ¢¢. Group 1 has
censored observations, whereas group 2 does
not. Thus, for group 1, censored observations
have to be taken into account when determin-
ing the number available at 7.

Plots of the KM curves for groups 1 and 2 are
shown here on the same graph. Notice that the
KM curve for group 1 is consistently higher
than the KM curve for group 2. These figures
indicate that group 1, which is the treatment
group, has better survival prognosis than group
2, the placebo group. Moreover, as the number
of weeks increases, the two curves appear to get
farther apart, suggesting that the beneficial
effects of the treatment over the placebo are
greater the longer one stays in remission.

The KM plots shown above can be easily
obtained from most computer packages that
perform survival analysis, including SAS, Stata,
SPSS, and R. All the user needs to do is provide
a KM computer program with the basic data
layout and then provide appropriate commands
to obtain plots.
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Ill. General Features
of KM Curves

General KM formula:

(t))

= S(t-0) x Pr(T > 10T > 1))

[N

KM formula = product limit
formula

f—1
S(ty-ry) = [ Pr(T>t0)|T > 1)
i=1

EXAMPLE

. 14
$(10) = 8067 x 7z = 7529

_ (18, 16], 14
= 121717 % 15

o
11
18_16_14 _11)_10
117°15°12) * 11

S(16) = .6902

Math proof:

Pr(A and B) = Pr(A) x Pr(B | A)
always

The general formula for a KM survival probabil-
ity at failure time #( is shown here. This formula
gives the probability of surviving past the previ-
ous failure time #¢_;), multiplied by the condi-
tional probability of surviving past time ¢,
given survival to at least time t .

The above KM formula can also be expressed as
a product limit if we substitute for the survival
probability S (1)), the product of all fractions
that estimate the conditional probabilities for
failure times ¢ and earlier.

For example, the probability of surviving
past 10 weeks is given in the table for group 1
(page 65) by .8067 times 14/15, which equals
.7529. But the .8067 can be alternatively
written as the product of the fractions 18/21
and 16/17. Thus, the product limit formula for
surviving past 10 weeks is given by the triple
product shown here.

Similarly, the probability of surviving past
16 weeks can be written either as .6902 x 10/11,
or equivalently as the five-way product of frac-
tions shown here.

The general expression for the product limit
formula for the KM survival estimate is shown
here together with the general KM formula
given earlier. Both expressions are equivalent.

A simple mathematical proof of the KM for-
mula can be described in probability terms.
One of the basic rules of probability is that
the probability of a joint event, say A and B,
is equal to the probability of one event, say A,
times the conditional probability of the other
event, B, given A.
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A=“T> t(f‘)" —Aand B=B
B — ‘lT > t(f*)’,

Pr(A and B) = Pr(B) =

No failures during ¢_1) < T < ¢y,
Pr(A) = Pr(T > Z(f,1)):

Thus, from Pr(A and B) formula,

Pr(A and B) = Pr(A) x Pr(B | A)

S(tp) = Slty-n)
x Pr(T > tplT > t(f))

If we let A be the event that a subject survives to
at least time ¢y and we let B be the event that a
subject survives past time f(, then the joint
event A and B simplifies to the event B, which
is inclusive of A. It follows that the probability
of A and B equals the probability of surviving
past time ?).

Also, because ¢( is the next failure time after
t(¢—1), there can be no failures after time 7
and before time #(. Therefore, the probability
of A is equivalent to the probability of surviving
past the (f — 1)th ordered failure time.

Furthermore, the conditional probability of B
given A is equivalent to the conditional proba-
bility in the KM formula.

Thus, using the basic rules of probability, the
KM formula can be derived.

IV. The Log-Rank Test
for Two Groups

Are KM curves statistically
equivalent?

We now describe how to evaluate whether or
not KM curves for two or more groups are
statistically equivalent. In this section we con-
sider two groups only. The most popular testing
method is called the log-rank test.

When we state that two KM curves are “statisti-
cally equivalent,” we mean that, based on a test-
ing procedure that compares the two curves in
some “overall sense,” we do not have evidence to
indicate that the true (population) survival
curves are different.
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Chi-square test
Overall comparison of KM
curves

e Observed versus expected

counts

e Categories defined by ordered

failure times

EXAMPLE

Remission data: n = 42

# failures # in risk set
40) myf mof nyf Nof
1 0 2 21 21
2 0 2 21 19
3 0 1 21 17
@ o 2 21 16
5 0 2 21 14
6 3 0 21 12
7 1 0 17 12
8 0 4 16 12
1 0 15 8
11 0 2 13 8
12 0 2 12 6
13 1 0 12 4
15 0 1 11 4
16 1 0 11 3
17 0 1 10 3
22 1 1 7 2
23 1 1 6 1

Expected cell counts:

ey = <L> x (myy + myy)
nif + oy
T T
Proportion  # of failures over
in risk set  both groups
ey = (ﬁ) x (g + may)

The log-rank test is a large-sample chi-square
test that uses as its test criterion a statistic that
provides an overall comparison of the KM
curves being compared. This (log-rank) statis-
tic, like many other statistics used in other
kinds of chi-square tests, makes use of observed
versus expected cell counts over categories of
outcomes. The categories for the log-rank sta-
tistic are defined by each of the ordered failure
times for the entire set of data being analyzed.

As an example of the information required for
the log-rank test, we again consider the com-
parison of the treatment (group 1) and placebo
(group 2) subjects in the remission data on
42 leukemia patients.

Here, for each ordered failure time, ¢, in the
entire set of data, we show the numbers of
subjects (m1;y) failing at that time, separately by
group (i), followed by the numbers of subjects
(n;p) in the risk set at that time, also separately
by group.

Thus, for example, at week 4, no subjects failed
in group 1, whereas two subjects failed in
group 2. Also, at week 4, the risk set for group 1
contains 21 persons, whereas the risk set for
group 2 contains 16 persons.

Similarly, at week 10, 1 subject failed in group 1,
and no subjects failed at group 2; the risk sets
for each group contain 15 and 8 subjects,
respectively.

We now expand the previous table to include
expected cell counts and observed minus
expected values for each group at each ordered
failure time. The formula for the expected
cell counts is shown here for each group. For
group 1, this formula computes the expected
number at time f (i.e., ey) as the proportion of
the total subjects in both groups who are at risk
at time f, that is, n/(n,r + 1), multiplied by
the total number of failures at that time for
both groups (i.e., 1y + myp). For group 2, ey
is computed similarly.
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EXAMPLE

# of failure times When two groups are being compared, the
l log-rank test statistic is formed using the sum

17 of the observed minus expected counts over all

O0i—Ei= Z (mir — eyr), failure times for one of the two groups. In this
f=1 example, this sum is —10.26 for group 1 and

i=1,2 10.26 for group 2. We will use the group 2 value

to carry out the test, but as we can see, except

EXAMPLE for the minus sign, the difference is the same
for the two groups.

Two groups: For the two-group case, the log-rank statistic,
shown here at the left, is computed by dividing
O; — E; = summed observed minus  the square of the summed observed minus

expected score for group 2 expected score for one of the groups — say,
group 2 — by the variance of the summed
(02 — Ex)? observed minus expected score.
2 — L2

LOg —rank statistic = m
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Var(O; — E;)

= mignoy (g + mag) (i + nay — myy — myy)
5 (g + nag) (g + moy — 1)
i=1,2

Hy: no difference between survival
curves

Log-rank statistic ~y* with 1 df
under Hy

Computer programs:
Stata’s “sts test”:

e descriptive statistics for KM
curves
log-rank statistic
Alternative statistics to
log-rank statistic

EXAMPLE

Using Stata: Remission Data

Events Events
Group observed expected
1 9 19.25
2 21 10.75
Total 30 30.00

Log rank = chi2(2) = 16.79
P-Value = Pr > chi2 = 0.000

The expression for the estimated variance is
shown here. For two groups, the variance for-
mula is the same for each group. This variance
formula involves the number in the risk set in
each group (n;) and the number of failures
in each group (m;) at time f. The summation
is over all distinct failure times.

The null hypothesis being tested is that there is
no overall difference between the two survival
curves. Under this null hypothesis, the log—-
rank statistic is approximately chi-square with
one degree of freedom. Thus, a P-value for the
log-rank test is determined from tables of the
chi-square distribution.

Several computer programs are available for
calculating the log-rank statistic. For example
the Stata package has a command called “sts
test” that computes descriptive information
about Kaplan-Meier curves, the log-rank sta-
tistic, and alternative statistics to the log-rank
statistic, to be described later. Other packages,
like SAS and SPSS, have procedures that pro-
vide results similar to those of Stata. A compar-
ison of Stata, SAS, SPSS and R procedures and
output is provided in the Computer Appendix at
the back of this text.

For the remission data, the edited printout
from using the Stata “sts test” procedure is
shown here. The log-rank statistic is 16.79
and the corresponding P-value is zero to three
decimal places. This P-value indicates that the
null hypothesis should be rejected. We can
therefore conclude that the treatment and pla-
cebo groups have significantly different KM
survival curves.
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EXAMPLE

0O, — E, =10.26
Var(O, — E,) = 6.2685
_E)?
Log - rank statistic = ,(\02—2)
Var(Oz — Ez)
(10.26)*

= 62685 — 16.793

Approximate formula:
# of groups (0 _ E.)Z
E;

X? ~

i

EXAMPLE

v (-10.26)>  (10.26)°
T 1926 10.74
=15.276

Log-rank statistic = 16.793

Although the use of a computer is the easiest
way to calculate the log-rank statistic, we pro-
vide here some of the details of the calculation.
We have already seen from earlier computa-
tions that the value of O, — E, is 10.26. The
estimated variance of O, — E, is computed
from the variance formula above to be 6.2685.
The log-rank statistic then is obtained by squar-
ing 10.26 and dividing by 6.285, which yields
16.793, as shown on the computer printout.

An approximation to the log-rank statistic,
shown here, can be calculated using observed
and expected values for each group without
having to compute the variance formula. The
approximate formula is of the classic chi-square
form that sums over each group being compared
the square of the observed minus expected value
divided by the expected value.

The calculation of the approximate formula is
shown here for the remission data. The
expected values are 19.26 and 10.74 for groups
1 and 2, respectively. The chi-square value
obtained is 15.276, which is slightly smaller
than the log-rank statistic of 16.793.

V. The Log-Rank Test
for Several Groups

Hy: All survival curves are the same.

Log-rank statistics for > 2 groups

involves variances and covariances
of Oi — Ei.

Matrix formula: See Appendix at
end of this chapter.

The log-rank test can also be used to compare
three or more survival curves. The null hypo-
thesis for this more general situation is that all
survival curves are the same.

Although the same tabular layout can be used
to carry out the calculations when there are
more than two groups, the test statistic is more
complicated mathematically, involving both
variances and covariances of summed observed
minus expected scores for each group. A con-
venient mathematical formula can be given in
matrix terms. We present the matrix formula for
the interested reader in an Appendix at the end
of this chapter.
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Use computer program for
calculations.

G (> 2) groups:
log-rank statistic ~ »* with
G- 1df

Approximation formula:
#ofgroups (O‘ . E‘)Z
1 1

X? =~
: E;
1

Not required because computer

program calculates the exact log—

rank statistic

EXAMPLE

vets.dat: survival time in days,

n 137

Veteran's Administration Lung Cancer Trial

Column 1: Treatment (standard = 1, test = 2)
Column 2: Cell type 1 (large = 1, other = 0)
Column 3: Cell type 2 (adeno = 1, other = 0)
Column 4: Cell type 3 (small = 1, other = 0)
Column 5: Cell type 4 (squamous = 1, other = 0)
Column 6: Survival time (days)

Column 7:

(0 = worst ... 100 = best)
Column 8: Disease duration (months)
Column 9: Age
Column 10: Prior therapy (none = 0, some = 1)
Column 11: Status (0 = censored, 1 = died)

We will not describe further details about the
calculation of the log-rank statistic, because a
computer program can easily carry out the
computations from the basic data file. Instead,
we illustrate the use of this test with data
involving more than two groups.

If the number of groups being compared is G
(> 2), then the log-rank statistic has approxi-
mately a large sample chi-square distribution
with G — 1 degrees of freedom. Therefore,
the decision about significance is made using
chi-square tables with the appropriate degrees
of freedom.

The approximate formula previously described
involving only observed and expected values
without variance or covariance calculations
can also be used when there are more than
two groups being compared. However, practi-
cally speaking, the use of this approximate
formula is not required as long as a com-
puter program is available to calculate the
exact log-rank statistic.

We now provide an example to illustrate the
use of the log-rank statistic to compare more
than two groups.

The data set “vets.dat” considers survival times
in days for 137 patients from the Veteran’s
Administration Lung Cancer Trial cited by
Kalbfleisch and Prentice in their text (The Sta-
tistical Analysis of Survival Time Data, John
Wiley, pp. 223-224, 1980). A complete list of
the variables is shown here. Failure status is
defined by the status variable (column 11).

Among the variables listed, we now focus on the
performance status variable (column 7). This
variable is a continuous variable, so before we
can obtain KM curves and the log-rank test,
we need to categorize this variable.
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EXAMPLE: (continued)

Performance Status Categories

Group # Categories Size
1 0-59 52
2 60-74 50
3 75-100 35

KM curves for performance status
groups

1.0+ t t t t t t

051131

0.0 1 T T ]

0 100 200 300 400 500 600

Events Events
Group observed expected
1 50 26.30
2 47 55.17
3 31 46.53
Total 128 128.00

Log-rank = chi2(2) = 29.18
P-value = Pr > chi2 = 0.0000
G =3groups;df=G —1=2

Log-rank test is highly significant.

Conclude significant difference
among three survival curves.
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If, for the performance status variable, we choose
the categories 0-59, 60-74, and 75-100, we
obtain three groups of sizes 52, 50, and 35,
respectively.

The KM curves for each of three groups are
shown here. Notice that these curves appear
to be quite different. A test of significance
of this difference is provided by the log-rank
statistic.

An edited printout of descriptive information
about the three KM curves together with the
log-rank test results are shown here. These
results were obtained using the Stata package.

Because three groups are being compared
here, G = 3 and the degrees of freedom for the
log-rank test is thus G — 1, or 2. The log-rank
statistic is computed to be 29.181, which has a
P-value of zero to three decimal places. Thus,
the conclusion from the log-rank test is that
there is a highly significant difference among
the three survival curves for the performance
status groups.

VI. Alternatives to the
Log Rank Test

Alternative tests supported by Stata

Wilcoxen

Tarone-Ware

Peto
Flemington-Harrington

There are several alternatives to the log rank test
offered by Stata, SAS, SPSS, and R designed
to test the hypothesis that two or more sur-
vival curves are equivalent. In this section we
describe the Wilcoxon, the Tarone-Ware, the
Peto, and the Flemington-Harrington test. All
of these tests are variations of the log rank test
and are easily implemented in Stata.
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Log rank uses

0i —E; =3 (my — ey)

f
i=group #

{ = fth failure time

Weighting the test statistic for two

groups

Test statistic:

2
(; w(ts) (mig — eif))

J
i=1,2

var <Z w(tp)) (my — eif))

f = fth failure time
w(ty) = weight at fth failure time

Wilcoxon Test

w(ty) = ny (number at risk)
Earlier failures receive more

weight

e Appropriate if treatment effect

is strongest in earliest phases of

administration

Weights Used for Various Test

Statistics

Test Statistic ~ W()

Log rank 1

Wilcoxon ng

Tarone-Ware NG

Peto 5(t )

Flemington- é(t(,r_ )
Harrington x[1 = S(t¢—1)]?

In describing the differences among these tests,
recall that the log rank test uses the summed
observed minus expected score O — E in each
group to form the test statistic. This simple sum
gives the same weight — namely, unity — to each
failure time when combining observed minus
expected failures in each group.

The Wilcoxon, Tarone-Ware, Peto, and
Flemington-Harrington test statistics are varia-
tions of the log rank test statistic and are derived
by applying different weights at the f-th failure
time (as shown on the left for two groups).

The Wilcoxon test (called the Breslow test in
SPSS) weights the observed minus expected
score at time t; by the number at risk n;, over
all groups at time t;. Thus, the Wilcoxon test
places more emphasis on the information
at the beginning of the survival curve where
the number at risk is large allowing early fail-
ures to receive more weight than later failures.
This type of weighting may be used to assess
whether the effect of a treatment on survival is
strongest in the earlier phases of administra-
tion and tends to be less effective over time.

The Tarone-Ware test statistic also applies more
weight to the early failure times by weighting the
observed minus expected score at time ¢ by
the square root of the number at risk ,/n;. The
Peto test weights the f-th failure time by the
survival estimate 5(¢() calculated over all groups
combined. This survival estimate 5(¢) is similar
but not exactly equal to the Kaplan-Meier sur-
vival estimate. The Flemington-Harrington test
uses the Kaplan-Meier survival estimate S(¢) over
all groups to calculate its weights for the f-th
failure time, $ ()1 — S (t¢—1))]?. The weights
for each of these test statistics are summarized
on the left.
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Flemington-Harrington Test

w(t) =S (t¢-1)"[1 = 8 (1¢-1))]"

ifp=1andq=0, w(t) = §(t(f;1))
ifp=0andq=1,

W(t) =1- S(f(f;l))
ifp=0andq=0,

w(t) = 1 (log rank test)

Comparisons of Test Results:
Remission Data, Testing
Treatment (RX)

Chi-square
Test (1db) P-value
Log rank 16.79 0.0000
Wilcoxon 13.46 0.0002
Tarone- 15.12 0.0001
Ware
Peto 14.08 0.0002
FH(p=3, 8.99 0.0027
q=1)
FH(p=1, 12.26 0.005
q=23)
Vets Data, 3-Level Performance
Status
Chi-square
Test (2 df) P-value
Log rank 29.18 0.0000
Wilcoxon  46.10 0.0000

Remission Data, 2-Level Treatment

Chi-square
Test (1df) P-value
Log rank 16.79 0.0000
Wilcoxon 13.46 0.0002

The Flemington-Harrington test allows the
most flexibility in terms of the choice of
weights because the user provides the values
of p and g. For example, if p =1 and q = 0 then
w(t) = §(t(f_1)) which gives more weight for the
earlier survival times when S(¢(_,)) is close to
one. However,if p=0and q=1thenw(t)=1 —
§(tq;1)) in which case the later survival times
receive more weight. If p = 0 and q = 0 then
w(t) = 1, and the Flemington-Harrington test
reduces to the log rank test.

On the left is a comparison of test results for
the effect of treatment (vs. placebo) using the
remission data. The log rank chi-square statis-
tic (also displayed previously in this chapter) is
the highest among these tests at 16.79. The
Flemington-Harrington (FH) test with p = 3
and q = 1 yielded the lowest chi-square value
at 8.99, although with this weighting it is not
immediately obvious which part of the survival
curve is getting the most weight. However, all
the test results are highly significant yielding a
similar conclusion to reject the null hypothesis.

On the left are comparisons of the log rank and
Wilcoxon tests for the 3-level performance sta-
tus variable from the vets dataset discussed in
the previous section. The Wilcoxon test yields a
higher chi-square value (46.10) than the log
rank test (29.18). In contrast, the log rank test
for the effect of treatment (RX) from the remis-
sions data yields a higher chi-square value
(16.79) than the Wilcoxon test (13.46). How-
ever, both the Wilcoxon and log rank tests are
highly significant for both performance status
and for treatment variables.



76 2. Kaplan-Meier Survival Curves and the Log-Rank Test

KM curves for performance status groups
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Choosing a Test

e Results of different weightings
usually lead to similar

conclusions

o The best choice is test with most

power

e Power depends on how the null

is violated

e There may be a clinical reason to

choose a particular weighting

e Choice of weighting should be a

priori

A comparison of survival curves gives insight
into why the Wilcoxon test yields a higher chi-
square value than the log rank test for the 3-
level performance status variable. The 3 curves
being compared are farthest apart in the early
part of followup before becoming closer later.
By contrast, a comparison of the 2 curves for
treatment shows the curves diverging over time.

In general, the various weightings should pro-
vide similar results and will usually lead to the
same decision as to whether the null hypothe-
sis is rejected. The choice of which weighting
of the test statistic to use (e.g., log rank or
Wilcoxon) depends on which test is believed to
provide the greatest statistical power, which
in turn depends on how it is believed the null
hypothesis is violated.

If there is a clinical reason to believe the effect
of an exposure is more pronounced toward the
beginning (or end) of the survival function,
then it makes sense to use a weighted test sta-
tistic. However, one should make an a priori
decision on which statistical test to use
rather than fish for a desired p-value. Fishing
for a desired result may lead to bias.
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Stratified log rank test

O — E scores calculated within

strata

O — E scores then summed

across strata
Allows control of stratified
variable

Stratified log-rank test
—>lwbc3 =1

| Events Events
rx | observed expected
0 | 0 2.91
1 | 4 1.09
Total | 4 4.00

|
->1lwbc3 = 2

| Events Events
rx I observed expected
0 | 5 7.36
1 | 5 2.64
Total | 10 10.00
->1lwbc3 = 3

| Events Events
rx | observed expected
0 | 4 6.11
1 | 12 9.89
Total | 16 16.00
->Total

Events

| Events expected
rx | observed (*)
0 | 9 16.38
1 | 21 13.62
Total | 30 30.00

The stratified log rank test is another variation
of the log rank test. With this test the summed
observed minus expected scores O — E are cal-
culated within strata of each group and then
summed across strata. The stratified log rank
test provides a method of testing the equi-
valence of survival curves controlling for
the stratified variable. An example of the stra-
tified log rank test is presented next using the
remission data.

On the left is Stata output from performing a
stratified log rank test for the effect of treat-
ment (RX) stratified by a 3-level variable
(LWBC3) indicating low, medium, or high log
white blood cell count (coded 1, 2, and 3,
respectively).

Within each stratum of LWBC3, the expected
number of events is calculated for the treated
group (RX = 0) and for the placebo group
(RX = 1). The total expected number of events
for the treated group is found by summing the
expected number of events over the three
strata: 2.91 + 7.36 + 6.11 = 16.38. Similarly
the total expected number of events for the pla-
cebo group is calculated: 1.09 + 2.64 + 9.89 =
13.62. This compares to 9 observed cases from
the treated group and 21 observed cases
from the placebo group yielding a chi-square
value of 10.14 with 1 degree of freedom (for
2 levels of treatment) and a corresponding
p-value of 0.0014.

Recall that when we did not control for log
white blood cell count, the log rank test for the
effect of treatment yielded a chi-square value of
16.79 and a corresponding p-value rounded
to 0.0000.
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Log rank unstratified

0i—E; =3 (my — ey)

J

i =group #, f = fth failure time

Log rank stratified
Oi—Ei =Y (my —ey)
s 7

i= group #,
s = stratum #

f = jth failure time,

Stratified or unstratified (G groups)
Under Hy:

log rank statistic ~y? with
G- 1df

Can stratify with other tests
Wilcoxon, Tarone-Ware,
Peto, Flemington-Harrington

Limitation
Sample-size may be small within
strata

Alternatively
Test associations using modeling

e Can simultaneously control
covariates
e Shown in next chapter

The only difference between the unstratified
and stratified approaches is that for the unstrat-
ified approach, the observed minus expected
number of events for each failure time is sum-
med over all failure times for each group (i).
With the stratified approach, the observed
minus expected number of events is summed
over all failure times for each group within
each stratum and then summed over all strata.
Either way, the null distribution is chi-square
with G — 1 degrees of freedom, where G repre-
sents the number of groups being compared
(not the number of strata).

The stratified approach can also be applied to
any of the weighted variations of the log rank
test (e.g., Wilcoxon). A limitation of the strati-
fied approach is the reduced sample size within
each stratum. This is particularly problematic
with the remission dataset, which has a small
sample size to begin with.

We have shown how the stratified log rank test
can be used to test the effect of treatment while
controlling for log white blood cell count. In
the next chapter we show how modeling can
be used to test an association of a predictor
variable while simultaneously controlling for
other covariates.

VII. Confidence intervals
for KM curves

95% CI for the KM curve:

Sku(t) £ 1.961/ Var[Sgu (0]

wherp Greenwood’s formula for
Var[Skm(t)] is given by

. N 2 my
varlS )] = (S t Y
arlSeu O] = (Seu(®) f:,%:g, [”f("f *m_f)]

tp = f-ordered failure time
m¢ = number of failures at t(p,
ng = number in the risk set at t,

We now describe how to calculate (95%)
confidence intervals (CIs) for the estimated
Kaplan—-Meier (KM) curve.

The 95% CI formula for estimated KM proba-
bility at any time point over follow-up has the
general large sample form shown on the left,
where éKM(t)denotgs the KM survival estimate
at time t and Var[Skm(t)] denotes variance of
Skm(t). The most common approach used to
calculate this variance uses the Greenwood’s
formula, also shown on the left.
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Conditional risk
myg B 1 my
ny (ng — l’l’lf) np | 0f — Mf

1
ZH_fP[T >t(f)‘ T Zt(f)]

m m
t n m nn-m) n(n-m) S(t) Var[S(t)]
0210 O 0 1 0
6 21 3 0.0079 0.0079 0.857 0.0058
7 17 1 0.0037 0.0116 0.807 0.0076
10 15 1 0.0048 0.0164 0.753 0.0093
13 12 1 0.0076 0.0240 0.690 0.0114
16 11 1 0.0091 0.0330 0.628 0.0130
22 7 1 0.0238 0.0569 0.538 0.0164
23 6 1 0.0333 0.0902 0.448 0.0181

6 weeks: 0.857+1.96y/(.857)% (0.0079)

=0.857+0.149 = (.708, 1.006)

T 1.0

10 weeks: s =

=.0048
n3 (113 - m3)

1
15(14)

e
it <t=10 ng(ng — my)
=0.0079 + 0.0037 + 0.0048 = 0.0164.
Var[Skm(10)] = (0.753)%(.0164) = 0.0093
95% CI : 0.753 £ 1.961/0.0093 = (0.564,0.942)

Same CI at t =11 and 12, since no
events occurred at those times.

REMISSION

Survival probability (%)

I s sl | 1 1

= L
0o 5 10

15 20 25 30 35
Time
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The summation component of Greenwood’s
formula essentially gives at each failure time t(p),
a weighted (by 1/ny) average of the conditional
risk of failing at those failure times prior to t(.
Thus, the variance formula gives the square of
the KM coordinate at each event time weighted
by the cumulative estimate of the risk at time t.

We illustrate how Greenwood’s variance is cal-
culated for the treatment group (Group 1) of
the remission times data described earlier. The
layout for this computation is shown n the left.

At 6 weeks, the estimate of the survival function
is 0.857. There were three events at 6 weeks and
21 patients at risk. Therefore, mg¢ng(ng — mg) =
3/(21x18) = 0.0079. As this is the only compo-
nent of the sum, the variance is then 0.0079 x
0.857% = 0.0058. The corresponding 95% confi-
dence interval is shown on the left, where the
upper level should be modified to 1.

At 10 weeks, the estimate of the survival func-
tion is 0.753. There was 1 event at 10 months
and 15 patients at risk. Therefore, m¢ng{ng-mg) =
1/(15x14) = 0.0048.

There were two other risk components prior to
this time, 0.0079 at time 6 and 0.0037 at time 7
and their sumis 0.0164. The variance at 10 weeks
is then 0.0164x0.7532, which equals 0.0093.

The 95% CI for the proportion of patients at
10 weeks is shown on the left to have the limits
(0.564, 0.942). Note that since the variance is
only defined at event times, the 95% confidence
interval remains the same at 11 and 12 weeks
also.

On the left we show the KM curves and their
corresponding 95% confidence intervals for
Group 1 (treatment) and Group 2 (placebo)
for the remission time data.
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VIII. Confidence intervals
for the median
survival time

Remission data example:
Group 1 median = 8 weeks
95% CI ?

Formula for 95% CI derived from:

(Skm(M) — 0.5)
Var[Sxm(M)]

2
~ 7 where

M = true (unknown) median sur-

A vival time, i.e., Sgm(M) = 0.5

Skm(M) = estimated survival prob-
ability from KM curve at the true
median survival time

Vér[S‘KM(M)] uses Greenwood’s
formula.

95% CI for median survival:

(S () —0.5)" < 3.84VarSen (1))

ty | S | S©-0.57 |3.84 VarS(t) I;el?;felgqy
0 1 0.250 -

1] 0.9 0.160 0.016 N
2 | 0381 0.096 0.028 N
3 [ 076 0568 0.033 N
4 | 0.67 0.029 0.041 Y
5] 057 0005 0.045 Y
8 [ 038 9.014 0.044 Y
1] 029 | 044 0.038 N
12| 01977 0.096 0,628 N
15| 044 0.130 A0.022 N
17| .10 0.160 .| - 0.016 N
22 | .05 0.203 0.008 N
23 [70.00 97050 0 N

A\ ¢ s
0.096 > 0.02§ so the inequality is not satisfied
0.014 > 0.0& and the inequality is satisfied

Caution (ref B&C, 1982): upper
limit should be adjusted to reflect
censoring, e.g., SAS’s LIFETEST
adjusts above 95% CI from (4,8)
to (4, 11).

Returning again to the remission time dataset,
we now consider the calculation of the 95% CI
for the median of the remission times for the
placebo group. Recall that the median survival
for this group is 8 weeks.

Brookmeyer and Crowley (1982) proposed a
simple way to calculate the CI for the median
survival time based on the fact that the square
of a standardized function of the survival curve
around the true (unknown) median value (M)
is asymptotically y’distributed. This relation-
ship is shown mathematically on the left.

Using the above result about the standar-
dized survival curve, a general formula for the
95% CI for the median survival is provided
by the inequality expression shown on the left.
The times for which this inequality holds are
plausible values of the true median, while
the boundaries represent upper and lower
times for the 95% CI for the median. The
lower boundary may be 0 and the upper bound-
ary may not always exist.

For the remission time data, the calculation of
the CI around the median of 8 weeks is given in
the table shown on the left. Since the inequality
in the CI formula is satisfied in the range t=4
weeks to 8 weeks, the resulting 95% CI is (4,8).

Brookmeyer and Crowley (B&C) caution that
the upper limit for these estimates should
be adjusted to reflect censoring. They recom-
mend reporting semiopen intervals that extend
one event beyond the event that satisfies the
inequality; some packages (e.g., SAS, R) incor-
porate this recommendation.

In this example, the 95% CI for the median
survival time obtained from SAS output is
given by the interval (4, 11), with the upper
limit now extended beyond 8 weeks but not
including the event at month 11.
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IX. Summary
KM curves:

KM curves:
1

0.8
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0.2
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tp: fth ordered failure time

f
HPI‘[T > l‘(,‘)|T > l‘(iﬂ
i=1

= 8(t¢-1)
X ISV(T > l(f)‘T > [(f))

$(t¢))

Log-rank test:

Hy: common survival curve for
all groups

(02— E)°

Log - rank statistic = ———*—
Var(O; — E3)

log-rank statistic ~y* with G — 1 df
under Hy

G = # of groups

Greenwood’s Variance formula:
. Ta 4 2
Var [SKM(t)] = (SKM(t))

mg
< 3 e
e LDE(0F - M)

We now briefly summarize this presentation.
First, we described how to estimate and graph
survival curves using the Kaplan-Meier (KM)
method.

To compute KM curves, we must form a data
layout that orders the failure times from smal-
lest to largest. For each ordered failure time,
the estimated survival probability is computed
using the product limit formula shown here.
Alternatively, this estimate can be computed as
the product of the survival estimate for the
previous failure time multiplied by the condi-
tional probability of surviving past the current
failure time.

When survival curves are being compared, the
log-rank test gives a statistical test of the null
hypothesis of a common survival curve. For
two groups, the log-rank statistic is based on
the summed observed minus expected scores
for a given group and its variance estimate. For
several groups, a computer should always be
used since the log-rank formula is more com-
plicated mathematically. The test statistic is
approximately chi-square in large samples
with G — 1 degrees of freedom, where G
denotes the number of groups being compared.

Large sample confidence intervals for KM
curves can be computed based on Greenwood’s
formula, shown at the left, for the variance of
an estimated KM survival probability.
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95% CI for KM:

Skm(t) £ 1.961/ Var [Skm(t)]

95% CI for median survival:

(Ska(t) — 0.5)°3.84 Var [Su (1)]

The expression for the 95% confidence interval
is shown below Greenwood’s formula.

A large sample confidence interval formula for
the median of the KM curve can also be com-
puted using the inequality formula shown here
on the left. The upper and lower boundaries of
t for which this inequality holds provide the
95% confidence limits.

Chapters

1. Introduction

V2. | Kaplan-Meier Survival Curves
and the Log-Rank Test

Next:

3. The Cox Proportional
Hazards Model and Its
Characteristics

This presentation is now complete. You can
review this presentation using the detailed
outline that follows and then try the practice
exercises and test.

Chapter 3 introduces the Cox proportional
hazards (PH) model, which is the most popular
mathematical modeling approach for estimat-
ing survival curves when considering several
explanatory variables simultaneously.
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I. Review (pages 58-60)

A.

B.

The outcome variable is (survival) time until an
event (failure) occurs.
Key problem: censored data, i.e., don’t know
survival time exactly.
Notation: T = survival time random variable
t = specific value of T
d = (0, 1) variable for failure/cen-
sorship status
S(t) = survivor function
h(t) = hazard function
Properties of survivor function:
i. theoretically, graph is smooth curve,
decreasing from S (¢) = 1 attimet =0to S
(t) =0att = oo;
ii. in practice, graph is step function.
Properties of A():
i. instantaneous potential for failing given
survival up to time;
ii. /() is a rate; ranges from 0 to oc.
Relationship of S (¢) to A(t): if you know one you
can determine the other.
Goals of survival analysis: estimation of survi-
vor and hazard functions; comparisons and
relationships of explanatory variables to sur-
vival.
Data layouts
i. for the computer;
ii. for understanding the analysis: involves
risk sets.

II. An Example of Kaplan-Meier Curves (pages 61-65)

A.

Data are from study of remission times in weeks
for two groups of leukemia patients (21 in each
group).

Group 1 (treatment group) has several censored
observations, whereas group 2 has no censored
observations.

Table of ordered failure times is provided for
each group.

For group 2 (all noncensored), survival prob-
abilities are estimated directly and plotted.
Formula used is

. # surviving past ¢
S(tg) = o :
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E.

F.

Alternative approach for group 2 is given by a
product limit formula.

For group 1, survival probabilities calculated by
multiplying estimate for immediately preceding
failure time by a conditional probability of sur-
viving past current failure time, i.e.,

S¢) =Sy Pr(T > tp)|T > 15)].

III. General Features of KM Curves (pages 66—67)

A.

Two alternative general formulae:

f o
(product limit
Sy = [[Pr[T > 1|7 = 1]
i=1

S¢ry =S¢ PrT > 1) |T > 15)]

formula)

Second formula derived from probability rule:

Pr(A and B) = Pr(A) x Pr(BJA)

IV. The Log-Rank Test for Two Groups (pages 67-71)

A.

B.

Large sample chi-square test; provides overall
comparison of KM curves.

Uses observed versus expected counts over cate-

gories of outcomes, where categories are

defined by ordered failure times for entire set

of data.

Example provided using remission data involv-

ing two groups:

i. expanded table described to show how
expected and observed minus expected cell
counts are computed.

ii. forith group at time f, wherei = 1 or 2:
observed counts = 1y,
expected counts = e;;, where

expected counts = (proportion in risk set) x
(# failures over both groups),

ie., ey = (W) (myy + may).

nif + of

Log-rank statistic for two groups:

(0; — E)°
Var(O,- - El) ’

wherei = 1. 2,
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Z ,f and

!
Var(0; — E;)

_ Z mignay (mig + map) (miy + noy — myy — may )
(my +noy) (g + oy = 1)
i = 1, 2
Hy: no difference between survival curves.

Log-rank statistic ~ 3* with 1 df under H,.
Approximate formula:

G 2
0; —E;
X? = Z%, where G = 2 = # of groups

H. Remission data example: Log-rank statistic =

16.793, whereas X? = 15.276.

V. The Log-Rank Test for Several Groups
(pages 71-73)

A.

B.
C.

Involves variances and covariances; matrix for-
mula in Appendix.

Use computer for calculations.

Under H,, log-rank statistic ~y* with G — 1 df,
where G = # of groups.

Example provided using vets.dat with interval
variable “performance status”; this variable is
categorized into G = 3 groups, so df for log—
rank test is G — 1 = 2, log-rank statistic is
29.181 (P = 0.0).

VI. Alternatives to the Log-Rank Test (pages 73-78)

A.

Alternative tests supported by Stata: Wilcoxen,
Tarone-Ware, Peto, and Flemington-Harring-
ton.

Alternative tests differ by applying different
weights at the j-th failure time.

The choice of alternative depends on the reason
for the belief that the effect is more pronounced
towards the beginning (or end) of the survival
function.

The stratified-log-rank test is a variation of the

log-rank test that controls for one or more stra-
tified variables.
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VII.

VIII.

IX.

Confidence Intervals for KM Curves
(pages 78-79)

A.

C.

General form of 95% CI.:

Skm(t) £ 1.961/ Var[Sgu ()]

Var[Skum(t) Juses Greenwood’s formula:

A~ T& $ 2 mf
VarlSin®] = (Skm(® [7]
ar[Skm (Skm(®) f%:sf ny(ng — my)

Example using Remission Time Data

Confidence Intervals for the Median Survival
Time (page 80)

A.

B.

General form of 95% CI where values of t satis-
fying the following inequality provide confi-
dence limits:

(S (1) — 0.5)°< 3.84Var(Si (1))

Example using Remission Time Data

Summary (page 81)
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Practice 1. The following data are a sample from the 1967-1980

Exercises Evans County study. Survival times (in years) are given
for two study groups, each with 25 participants. Group 1
has no history of chronic disease (CHR = 0), and group 2
has a positive history of chronic disease (CHR = 1):

Group 1 (CHR = 0): 12.3+, 5.4, 8.2, 12.2+, 11.7, 10.0,
5.7,9.8,2.6,11.0,9.2, 12.1+,
6.6,2.2,138,10.2,10.7, 11.1,
5.3,3.5,9.2,25,87,3.8,3.0

Group 2 (CHR = 1): 5.8, 2.9, 8.4, 8.3,9.1,4.2, 4.1, 1.8,
3.1,11.4,2.4,14,5.9, 1.6, 2.8,
4.9,35,6.5,9.9, 3.6,5.2, 838,
7.8,4.7,3.9

a. Fill in the missing information in the following
table of ordered failure times for groups 1 and 2:

Group 1 Group 2

tp ne omy g Slp)  tp  ng omy g Slp)
00 25 0 0 1.00 00 25 0 O 1.00
1.8 25 1 0 .96 1.4 25 1 0 .96
22 24 1 0 .92 1.6 24 1 0 .92
25 23 1 0 .88 1.8 23 1 0 .88
26 22 1 0 .84 24 22 1 0 .84
30 21 1 0 .80 28 21 1 0 .80
35 20 29 20 1 0 .76
38 19 1 0 .72 31 19 1 0o .72
5.3 18 1 0 .68 35 18 1 0 .68
54 17 1 0 .64 36 17 1 0 .64
57 16 1 0 .60 3.9
6.6 15 1 0 .56 4.1 ‘ ’
82 14 1 0 .52 4.2
87 13 1 0 .48 47 13 1 0 .48
92 ( ) 49 12 1 0 .44
9.8 10 1 0 .36 52 11 1 0 .40
100 9 1 0 .32 58 10 1 0 .36
102 8 1 0 .28 59 9 1 0 .32
107 7 1 0 .24 65 8 1 0 .28
110 6 1 0 .20 78 7 1 0 .24
11.1 5 1 0 .16 83 6 1 0 .20
117 4 C 9 84 5 1 0 .16

8.8 4 1 0 .12

9.1

9.9

114 1 1 0 .00

b. Based on your results in part a, plot the KM curves
for groups 1 and 2 on the same graph. Comment on
how these curves compare with each other.
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c. Fillin the following expanded table of ordered failure

times to allow for the computation of expected and
observed minus expected values at each ordered fail-
ure time. Note that your new table here should com-
bine both groups of ordered failure times into one
listing and should have the following format:

40} mye Mop| Niy Noff eyf exf mif—e lf m2f~e2,~
1.4 0 1125 25 .500  .500 |-.500 .500
1.6 0 1125 24 510 490 |-.510 .510
1.8 1 1|25 23] 1.042 958 |—.042 .042
2.2 1 0] 24 22 .522 478 478 —.478
2.4 0 1123 22 511 489 | —-.511 511
2.5 1 0|23 21 .523 AT7 AT77 —.4717
2.6 1 0|22 21 516 484 484 —.484
2.8 0 1121 21 .500  .500 |-.500 .500
2.9 0 1121 20 512 488 |—.512 512
3.0 1 0|21 19 .525 475 475 —.475
31
3.5
3.6
3.8
3.9 0 1 18 16 529 471 |-.529 .529
4.1 0 1 18 15 .545 455 | —.545 .545
4.2 0 1 18 14 .563 437 |—-.563 .563
4.7 0 1 18 13 581 419 | —.581 581
4.9 0 1 18 12 .600 400 |—.600 .600
5.2 0 1 18 11 621 379 | —-.621 .621
5.3 1 0| 18 10 .643 .357 .357 -.357
5.4 1 0 17 10 .630 .370 .370 —-.370
5.7 1 0| 16 10 .615 .385 .385 —.385
5.8 0 1 15 10 .600 400 |—.600 .600
5.9 0 1 15 9 .625 375 |—.625 .625
6.5 0 1 15 8 .652 .348 | —.652 .652
6.6 1 0| 15 7 .682 318 318 —.318
7.8 0 1 14 7 .667 333 | —.667 .667
8.2 1 0| 14 6 .700  .300 .300 —.300
8.3 0 1 13 6 684 316 |—.684 .684
8.4 0 1 13 5 122 278 | —.722 122
8.7 1 0| 13 4 765 .235 .335 -.335
8.8 0 1 12 4 750  .250 |-.750 .750
9.1 0 1 12 3 .800 .200 | —.800 .800
9.2
9.8
9.9

10.0 1 0 9 1 .900 .100 .100 —.100

10.2 1 0 8 1 .888 A112 112 —.112

10.7 1 0 7 1 .875 125 125 —.125

11.0 1 0 6 1 .857  .143 .143 —.143

111 1 0 5 1 .833 167 167 —.167

11.4 0 1 4 1 .800 .200 | —.800 .800

11.7 1 0 4 0| 1.000 .000 .000 .000

Totals 22 25 30,79 1621 O
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d. Use the results in part ¢ to compute the log-rank
statistic. Use this statistic to carry out the log-rank
test for these data. What is your null hypothesis and
how is the test statistic distributed under this null
hypothesis? What are your conclusions from the
test?

2. The following data set called “anderson.dat” consists
of remission survival times on 42 leukemia patients,
half of whom get a certain new treatment therapy and
the other half of whom get a standard treatment
therapy. The exposure variable of interest is treatment
status (Rx = 0 if new treatment, Rx = 1 if standard
treatment). Two other variables for control as potential
confounders are log white blood cell count (i.e.,
logwbc) and sex. Failure status is defined by the relapse
variable (0 if censored, 1 if failure). The data set is listed

as follows:

Subj Survt Relapse Sex log WBC Rx
1 35 0 1 1.45 0
2 34 0 1 1.47 0
3 32 0 1 2.20 0
4 32 0 1 2.53 0
5 25 0 1 1.78 0
6 23 1 1 2.57 0
7 22 1 1 2.32 0
8 20 0 1 2.01 0
9 19 0 0 2.05 0

10 17 0 0 2.16 0

11 16 1 1 3.60 0

12 13 1 0 2.88 0

13 11 0 0 2.60 0

14 10 0 0 2.70 0

15 10 1 0 2.96 0

16 9 0 0 2.80 0

17 7 1 0 4.43 0

18 6 0 0 3.20 0

19 6 1 0 2.31 0

20 6 1 1 4.06 0

21 6 1 0 3.28 0

22 23 1 1 1.97 1

23 22 1 0 2.73 1

24 17 1 0 2.95 1

25 15 1 0 2.30 1

26 12 1 0 1.50 1

27 12 1 0 3.06 1

28 11 1 0 3.49 1

(Continued on next page)
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Subj Survt Relapse Sex log WBC Rx
29 11 1 0 2.12 1
30 8 1 0 3.52 1
31 3 1 0 3.05 1
32 8 1 0 2.32 1
33 8 1 1 3.26 1
34 5 1 1 3.49 1
35 5 1 0 3.97 1
36 4 1 1 4.36 1
37 4 1 1 2.42 1
38 3 1 1 4.01 1
39 2 1 1 491 1
40 2 1 1 4.48 1
41 1 1 1 2.80 1
42 1 1 1 5.00 1

a. Suppose we wish to describe KM curves for the
variable logwbc. Because logwbc is continuous,
we need to categorize this variable before we com-
pute KM curves. Suppose we categorize logwbc
into three categories - low, medium, and high - as
follows:

low (0-2.30), n = 11;
medium (2.31-3.00), n = 14;
high (>3.00), n = 17.

Based on this categorization, compute and graph
KM curves for each of the three categories of
logwbe. (You may use a computer program to assist
you or you can form three tables of ordered failure
times and compute KM probabilities directly.)

b. Compare the three KM plots you obtained in part a.
How are they different?

c. Below is an edited printout of the log-rank test
comparing the three groups.

Events Events
Group observed expected
1 4 13.06
2 10 10.72
3 16 6.21
Total 30 30.00

Log-rank = chi2(2) = 26.39
P-value = Pr > chi2 = 0.0000

What do you conclude about whether or not the
three survival curves are the same?
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To answer the questions below, you will need to use a
computer program (from SAS, Stata, SPSS, R or any
other package you are familiar with) that computes and
plots KM curves and computes the log-rank test. Freely
downloadable files can be obtained from weblink http://
www.sph.emory.edu/dkleinb/surv3.htm.

1. For the vets.dat data set described in the presentation:

a. Obtain KM plots for the two categories of the vari-
able cell type 1 (1 = large, 0 = other). Comment on
how the two curves compare with each other. Carry
out the log-rank, and draw conclusions from the
test(s).

b. Obtain KM plots for the four categories of cell type -
large, adeno, small, and squamous. Note that you
will need to recode the data to define a single vari-
able which numerically distinguishes the four cate-
gories (e.g., 1 = large, 2 = adeno, etc.). As in part a,
compare the four KM curves. Also, carry out the
log-rank for the equality of the four curves and
draw conclusions.

2. The following questions consider a data set from a
study by Caplehorn et al. (“Methadone Dosage and
Retention of Patients in Maintenance Treatment,”
Med. J. Aust., 1991). These data comprise the times in
days spent by heroin addicts from entry to departure
from one of two methadone clinics. There are two fur-
ther covariates, namely, prison record and methadone
dose, believed to affect the survival times. The data set
name is addicts.dat. A listing of the variables is given
below:

Column 1: Subject ID
Column 2: Clinic (1 or 2)

Column 3: Survival status (0 = censored, 1 = departed
from clinic)

Column 4: Survival time in days
Column 5: Prison record (0 = none, 1 = any)
Column 6: Methadone dose (mg/day)
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a. Compute and plot the KM plots for the two categories
of the “clinic” variable and comment on the extent to
which they differ.

b. A printout of the log-rank and Wilcoxon tests (using
Stata) is provided below. What are your conclusions
from this printout?

Events Events
Group observed expected
1 122 90.91
2 28 59.09
Total 150 150.00

Log-rank = chi2(1) = 27.89
P-value = Pr > chi2 = 0.0000
Wilcoxon = chi2(1) = 11.63
P-value = Pr > chi2 = 0.0007

c. Compute and evaluate KM curves and the log-rank
test for comparing suitably chosen categories of the
variable “Methadone dose.” Explain how you deter-
mined the categories for this variable.
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1. a.
Group 1 Group 2
ty ng myoqr Sltp) tp  ny my o g Slp)
0.0 25 0 0 1.00 00 25 0 0 1.00
1.8 25 1 0 .96 1.4 25 1 0 .96
22 24 1 0 .92 1.6 24 1 0 .92
25 23 1 0 .88 1.8 23 1 0 .88
26 22 1 0 .84 24 22 1 0 .84
3.0 21 1 0 .80 28 21 1 0 .80
3.5 20 29 20 1 0 .76
3.8 19 1 0 72 31 19 1 0 72
53 18 1 0 .68 35 18 1 0 .68
54 17 1 0 .64 36 17 1 0 .64
57 16 1 0 .60 39 (16 1 0 .60
6.6 15 1 0 .56 4.1 ‘15 1 0 .56
82 14 1 0 .52 42 14 1 0 .52
87 13 1 0 48 47 13 1 0 48
92 (12 2 0 .40) 49 12 1 0 .44
98 10 1 0 .36 52 11 1 0 40
10.0 9 1 0 .32 58 10 1 0 .36
10.2 8 1 0 .28 5.9 9 1 0 .32
10.7 7 1 0 .24 6.5 8 1 0 28
11.0 6 1 0 .20 7.8 7 1 0 24
11.1 5 1 0 .16 8.3 6 1 0 .20
11.7 4 13 12) 8.4 5 1 0 .16
8.8 4 1 0 12
9.1 3 1 0 .08]
9.9 2 1 0 .04
11.4 1 1 0 .00
b. KM curves for CHR data:

1.0 1
e,
2

0.5+
S
—

0.0f —
0 2 4 6 8 10 12 14

Group 1 appears to have consistently better survival
prognosis than group 2. However, the KM curves
are very close during the first 4 years, but are quite
separate after 4 years, although they appear to
come close again around 12 years.

Using the expanded table format, the following
information is obtained:
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L My Mof |y Nof |€1f €af My — exf Maf — €zf
14 | 0 125 25| .500 .500| —.500 .500
1.6 | 0 1|25 24| .510 .490| —.510 .510
1.8 1 125 23] 1.042 .958| —.042 .042
2.2 1 0|24 22| .522 478 478 —.478
24. | 0 123 22| .511 .489| —.511 511
25. | 1 0|23 21| .523 477 477 —.477
2.6 1 0122 21| 516 .484| .484 —.484
28 | 0 121 21| .500 .500| —.500 .500
29 | 0 121 20| .512 .488| —.512 512
3.0 1 0|21 19| .525 .475| 475 —.475
3.1 0 1120 19| .513 .487| —.513 513
3.5 1 120 18] 1.053 .947| —.053 .053
36 ||0 1 (19 17| .528 .472| —.528 528
3.8 1 0[19 16| .543  .457| 457 —.457
39 | 0 1 (18 16| .529 .471| —.529 .529
4.1 0 1|18 15| .545 .455| —.545 .545
42 | 0 1|18 14| .563 .437| —.563 .563
47 | 0 1|18 13| .581 .419| —.581 .581
49 | 0 1|18 12| .600 .400| —.600 .600
52 | 0 1 (18 11| .621 .379| —.621 .621
5.3 1 0|18 10| .643 .357| .357 —.357
5.4 1 0117 10| .630 .370| .370 —.370
5.7 1 0|16 10| .615 .385| .385 —.385
58 | 0 1|15 10| .600 .400| —.600 .600
59 | 0 1115 9| .625 .375| —.625 .625
65 | 0 1|15 8| .652 .348| —.652 .652
6.6 1 0|15 7| .68 .318| .318 —.318
78 | 0 1|14 7| .667 .333| —.667 .667
8.2 1 0114 6| .700 .300| .300 —.300
83 | 0 1|13 6| .684 .316| —.684 .684
84 | 0 1|13 5| .722 .278| —-.722 722
8.7 1 0|13 4| .765 .235| .335 —.335
88 | 0 1|12 4| .750 .250| —.750 .750
9.1 0 1 (12 3| .800 .200| —.800 .800
92 |(2 0 [12 2| 1.714 286| .286 —.286
9.8 1 0|10 2| .833 .167| .167 —.167
99 |0 _1]9 2| .818 .182| —.818 .818
10.0 1 0|9 1| .90 .100{ .100 -.100
10.2 1 0|8 1] .888 .112| .112 —.112
10.7 1 0|7 1| .875 .125| .125 —.125
11.0 1 0|6 1| .857 .143| .143 —.143
11.1 1 0|5 1| .833 .167| .167 —.167
114 | 0 1|4 1| .800 .200| —.800 .800
11.7 1 0|4 0] 1000 .000| .000 .000
Totals 22 25 30.79 16.21 (=8.790 8.790)
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d. The log-rank statistic can be computed from the
totals of the expanded table using the formulae:

( ,—E)

log-rank statistic = ——
Var(0; — E;)

Var(O,- - E,)

-y minay (miy + maoy) (my + nay — myy — moy)
z‘ (my + nay) (my + oy = 1)

The variance turns out to be 9.658, so that the log—
rank statistic is (8.79)%/9.658 = 7.993.

Using Stata, the results for the log-rank test are
given as follows:

Events Events
Group observed expected
1 22 30.79
2 25 16.21
Total 47 47.00

Log-rank = chi2(1) = 7.99
P-value = Pr > chi2 = 0.0047

The log-rank test gives highly significant results.
This indicates that there is a significant difference
in survival between the two groups.

a. Forthe Anderson dataset, the KM plots for the three
categories of log WBC are shown below:

1.

0.6F
0.4 ; Group 2 (log WBC 2.31-3.0)
0.2 i Group 3 (log WBC > 3|0)

O S T VR
Weeks

b. The KM curves are quite different with group 1
having consistently better survival prognosis than
group 2, and group 2 having consistently better
survival prognosis than group 3. Note also that the
difference between group 1 and 2 is about the same
over time, whereas group 2 appears to diverge from
group 3 as time increases.

c. The log-rank statistic (26.391) is highly significant
with P-values equal to zero to three decimal places.
These results indicate that there is some overall
difference between the three curves.
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Appendix: Fori=1,2,...,Gandf=1,2,..., k, where G = # of groups
Matrix and k = # of distinct failure times,
Formula n; = # at risk in ith group at fth ordered failure time
for the
Log—Rank m;r = observed # of failures in ith group at fth ordered
Statistic for failure time
Several e;r= expected # of failures in ith group at fth ordered failure
Groups time
l’lif
= (—— +
(nlf +n2f> (mlf m2f>
G
ng = Z nif
i=1
G

=
Var(0; — E;) = Z (nxf (nf z’lzf)mzf Enf mf))
= nf(ny — 1)
k - —
Cov(0; — E;, O; — Z < nlfn[fmf nf mf)>
= (ny — 1)
d=(01-E, O—E, ..., OG- 7EG_1)

V= ((Vil))

wherev;; = Var (O; — E;) andv;; = Cov (O; — E;, O; — E)) fori
=1,2,...G-1;1=1,2,...,G — 1.

Then, the log-rank statistic is given by the matrix product
formula:

[Log-rank statistic = d'V~'d|

which has approximately a chi-square distribution with
G — 1 degrees of freedom under the null hypothesis that
all G groups have a common survival curve.
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Introduction

Abbreviated
Outline

We begin by discussing some computer results using the
Cox PH model, without actually specifying the model;
the purpose here is to show the similarity between the
Cox model and standard linear regression or logistic
regression.

We then introduce the Cox model and describe why it is so
popular. In addition, we describe its basic properties,
including the meaning of the proportional hazards
assumption and the Cox likelihood. We also describe how
and why we might consider using “age as the time scale”
instead of “time-on follow-up” as the outcome variable.

The outline below gives the user a preview of the material
to be covered by the presentation. A detailed outline for
review purposes follows the presentation.

I. A computer example using the Cox PH model
(pages 100-108)

II. The formula for the Cox PH model
(pages 108-110)

III. Why the Cox PH model is popular (pages 110-112)

IV. ML estimation of the Cox PH model
(pages 112-114)

V. Computing the hazard ratio (pages 114-117)
VI. Interval estimation: interaction (pages 117-119)

VII. Adjusted survival curves using the Cox PH model
(pages 120-123)

VIII. The meaning of the PH assumption
(pages 123-127)

IX. The Cox likelihood (pages 127-131)
X. Using age as the time scale (pages 131-142)
XI. Summary (pages 143-144)
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Objectives Upon completing this chapter, the learner should be able to:

1.

10.

11.

12.

13.

14.

State or recognize the general form of the Cox PH
model.

State the specific form of a Cox PH model appropriate
for the analysis, given a survival analysis scenario
involving one or more explanatory variables.

State or recognize the form and properties of the
baseline hazard function in the Cox PH model.

Give three reasons for the popularity of the Cox PH
model.

State the formula for a designated hazard ratio of
interest given a scenario describing a survival analysis
using a Cox PH model, when

a. there are confounders but no interaction terms in
the model;

b. there are both confounders and interaction terms
in the model.

State or recognize the meaning of the PH assumption.

Determine and explain whether the PH assumption is
satisfied when the graphs of the hazard functions for
two groups cross each other over time.

State or recognize what is an adjusted survival curve.

Compare and/or interpret two or more adjusted
survival curves.

Given a computer printout involving one or more
fitted Cox PH models,

a. compute or identify any hazard ratio(s) of interest;

b. carry out and interpret a designated test of
hypothesis;

c. carry out, identify or interpret a confidence
interval for a designated hazard ratio;

d. evaluate interaction and confounding involving
one or more covariates.

Give an example of how the Cox PH likelihood is

formed.

Given left truncated survival data, describe how and
when you would consider using “age as the time scale”
instead of “time-on follow-up” as the outcome
variable.

Given left-truncated survival data, state the hazard
function formula that uses “age as the time scale” as
the outcome variable.

Tllustrate the difference between an “open cohort” and
a “closed cohort”.
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Presentation

» model form

» why popular
* ML estimation
» hazard ratio

« adjusted survival

curves

» PH assumption

This presentation describes the Cox proportional
hazards (PH) model, a popular mathematical
model used for analyzing survival data. Here,
we focus on the model form, why the model is
popular, maximum likelihood (ML) estimation
of the model parameters, the formula for the
hazard ratio, how to obtain adjusted survival
curves, and the meaning of the PH assumption.

I. A Computer Example
Using the Cox PH

Model

EXAMPLE

Leukemia Remission Data
Group 1(n = 21)

Group 2(n = 21)

t (weeks) log WBC

t (weeks) log WBC

20+
25+
32+
32+
34+
35+

2.31
4.06
3.28
4.43
2.96
2.88
3.60
2.32
2.57
3.20
2.80
2.70
2.60
2.16
2.05
2.01
1.78
2.20
2.53
1.47
1.45

0o WoUILULE B WNDN ——

2.80
5.00
4.91
4.48
4.01
4.36
2.42
3.49
3.97
3.52
3.05
2.32
3.26
3.49
2.12
1.50
3.06
2.30
2.95
2.73
1.97

+ denotes censored observation

We introduce the Cox PH model using com-
puter output from the analysis of remission
time data (Freireich et al., Blood, 1963), which
we previously discussed in Chapters 1 and 2.
The data set is listed here at the left.

These data involve two groups of leukemia
patients, with 21 patients in each group.
Group 1 is the treatment group, and group 2 is
the placebo group. The data set also contains
the variable log WBC, which is a well-known
prognostic indicator of survival for leukemia
patients.

For this example, the basic question of interest
concerns comparing the survival experience of
the two groups adjusting for the possible con-
founding and/or interaction effects of log WBC.
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EXAMPLE: (continued)

T = weeks until going out of remission

X, = group status = E
X, = log WBC (confounding?)

Interaction?
X3 = X; x X, = group status x log
WBC

Computer results for three Cox PH
models using the Stata package

Other computer packages provide
similar information.

Computer Appendix: uses Stata, SAS,

and SPSS on the same dataset.

Edited Output From Stata:

Model 1:
Coef. Std. Err.

We are thus considering a problem involving
two explanatory variables as predictors of sur-
vival time 7, where T denotes “weeks until
going out of remission.” We label the explana-
tory variables X (for group status) and X, (for
log WBC). The variable X; is the primary study
or exposure variable of interest. The variable X,
is an extraneous variable that we are including
as a possible confounder or effect modifier.

Note that if we want to evaluate the possible
interaction effect of log WBC on group status,
we would also need to consider a third variable,
that is, the product of X; and X,.

For this dataset, the computer results from fit-
ting three different Cox proportional hazards
models are presented below. The computer pack-
age used is Stata. This is one of several packages
that have procedures for carrying out a survival
analysis using the Cox model. The information
printed out by different packages will not have
exactly the same format, but they will provide
similar information. A comparison of output
using Stata, SAS, SPSS, and R procedures on
the same dataset is provided in the computer
appendix at the back of this text.

Haz. Ratio

p > |7

[95% Conf. Interval]

Rx 1.509

0.410 3.68 0.000

4.523 2.027 10.094

No. of subjects = 42

Log likelihood = —86.380

Prob > chi2 = 0.0001

Model 2:

Coef. Std. Err. 4 p >z Haz. Ratio [95% Conf. Interval]
Rx 1.294 0.422 3.07 0.002 3.648 1.595 8.343
log WBC 1.604 0.329 4.87 0.000 4.975 2.609 9.486

No. of subjects = 42

Log likelihood = —72.280

Prob > chi2 = 0.0000

Model 3:

Coef. Std. Err. z p > || Haz. Ratio [95% Contf. Interval]
Rx 2.355 1.681 1.40 0.161 10.537 0.391 284.201
log WBC 1.803 0.447 4.04 0.000 6.067 2.528 14.561
Rx x log WBC —0.342 0.520 —0.66 0.510 0.710 0.256 1.967

No. of subjects = 42

Log likelihood = —72.066

Prob > chi2 = 0.0000
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EDITED OUTPUT FROM STATA
Model 1:

Coef.  Std. Err. p>|z| Haz. Ratio
Rx 1.509 0.410 0.000 4.523
No. of subjects = 42 Log likelihood = —86.380

Hazard ratios

Model 2:

Coef. Std. Err. p> |zl Haz. Ratio
Rx 1.294 0.422 0.002  3.648
log WBC 1.604 0.329 0.000 4.975

No. of subjects = 42 Log likelihood = —72.280

Model 3:

Coef. Std. Err. p > |z| Haz. Ratio
Rx 2.355 1.681 0.161 10.537
log WBC 1.803 0.447 0.000 6.067
Rx x log WBC —0.342 0.520 0.510 0.710

No. of subjects = 42 Log likelihood = —72.066

Models 1 and 2: e°°¢f = HR
Model 3: HR formula more
complicated

EXAMPLE: (continued)

Same dataset for each model
n = 42 subjects
T = time (weeks) until out of remission

Model 1: Rx only
Model 2: Rx and log WBC

Model 3: Rx, log WBC, and
Rx x log WBC

We now describe how to use the computer
printout to evaluate the possible effect of treat-
ment status on remission time adjusted for the
potential confounding and interaction effects
of the covariate log WBC. For now, we focus
only on five columns of information provided
in the printout, as presented at the left for all
three models.

For each model, the first column identifies the
variables that have been included in the model.
The second column gives estimates of regres-
sion coefficients corresponding to each vari-
able in the model. The third column gives
standard errors of the estimated regression
coefficients. The fourth column gives p-values
for testing the significance of each coefficient.
The fifth column, labeled as Haz. Ratio, gives
e®°°! for each variable in each model.

As we discuss later in this chapter, e gives an

estimated hazard ratio (HR) for the effect of
each variable adjusted for the other variables in
a model (e.g. Models 1 and 2) without product
terms. With product terms such as Rx x log
WBC in Model 3, the hazard ratio formula is
more complicated, as we also discuss later.

Except for the Haz. Ratio column, these com-
puter results are typical of output found in stan-
dard linear regression printouts. As the printout
suggests, we can analyze the results from a Cox
model in a manner similar to the way we would
analyze a linear regression model.

We now distinguish among the output for the
three models shown here. All three models are
using the same remission time data on 42 sub-
jects. The outcome variable for each model is
the same: time in weeks until a subject goes
out of remission. However, the independent
variables are different for each model. Model 1
contains only the treatment status variable,
indicating whether a subject is in the treat-
ment or placebo group. Model 2 contains two
variables, treatment status and log WBC. And
model 3 contains an interaction term defined as
the product of treatment status and log WBC.
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EDITED OUTPUT: ML ESTIMATION
Model 3:

Std. Haz.

Coef.  Err. p>lz Ratio

Rx 2.355 1.681 0.161 10.537
log WBC 1.803 0.447 0.000 6.067

Rx x log WBC -0.342 0.520 (0.510) 0.710
No. of subjects = 42 [Log likelihood = —72.066|

EXAMPLE: (continued)

P =0510: 0342 —0.66 = Z Wald

statistic —0.520

LR statistic: uses Log likelihood =
—72.066

—2 In L (log likelihood statistic) =
—2 x (=72.066) = 144.132

Edited Output

Model 2:

Coef. Std. Err. p> |z Haz. Ratio

Rx 1.294 0.422 0.002  3.648
log WBC 1.604 0.329 0.000 4.975

No. of subjects = 42 [Log Tikelihood = —72.280]
—2InL = —2x (-72.280) = 144.550

EXAMPLE: (continued)
LR (interaction in model 3)
=—21n Lmodel 2 — (_2 In Lmodel 3)

In general:
LR=-2In LR — (—2 In LF)

We now focus on the output for model 3. The
method of estimation used to obtain the coeffi-
cients for this model, as well as the other two
models, is maximum likelihood (ML) estima-
tion. Note that a p-value of 0.510 is obtained for
the coefficient of the product term for the inter-
action of treatment with log WBC. This p-value
indicates that there is no significant inter-
action effect, so that we can drop the product
term from the model and consider the other
two models instead.

The p-value of 0.510 that we have just des-
cribed is obtained by dividing the coefficient
—0.342 of the product term by its standard
error of 0.520, which gives —0.66, and then
assuming that this quantity is approximately
a standard normal or Z variable. This Z statistic
is known as a Wald statistic, which is one of
two test statistics typically used with ML esti-
mates. The other test statistic, called the likeli-
hood ratio, or LR statistic, makes use of the log
likelihood statistic. The log likelihood statistic
is obtained by multiplying the “Log likelihood”
in the Stata output by —2 to get —2 In L.

We now look at the output for model 2, which
contains two variables. The treatment status
variable (Rx) represents the exposure variable
of primary interest. The log WBC variable is
being considered as a confounder. Our goal is
to describe the effect of treatment status
adjusted for log WBC. Note that for Model 2,
—2 In L equals 144.550.

To use the likelihood ratio (LR) statistic to
test the significance of the interaction term,
we need to compute the difference between
the log likelihood statistic of the reduced
model which does not contain the interaction
term (model 2) and the log likelihood statistic
of the full model containing the interaction
term (model 3). In general, the LR statistic
can be written in the form —2 In Lz minus
—2 In Lg, where R denotes the reduced model
and F denotes the full model.
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EXAMPLE: (continued)

LR (interaction in model 3)

=-2In Lmodel 2 — (_2 In Lrnodel 3)

= (=2 x —72.280) — (=2 x —72.066)
= 144.550 — 144.132 = 0.428

(LR is y? with 1 d.f. under Hy: no
interaction.)

0.40 < P < 0.50, not significant
Wald test P = 0.510

LR # Wald
When in doubt, use the LR test.

OUTPUT

Model 2:

Coef. Std. Err. p> |z Haz. Ratio

Rx 1.294) 0.422

log WBC 1.604 0.329 0.000 4.975
No. of subjects = 42 [Log likelihood = —72.280]

Three statistical objectives.
1. test for significance of effect

2. point estimate of effect
3. confidence interval for effect

EXAMPLE: (continued)

Test for treatment effect:
Wald statistic: P = 0.002 (highly
significant)
LR statistic: compare
—2 log L from model 2 with
—2 log L from model without Rx
variable
Printout not provided here

Conclusion: treatment effect is
significant, after adjusting for log WBC

To obtain the LR statistic in this example, we
compute 144.550 minus 144.132 to obtain 0.428.
Under the null hypothesis of no interaction
effect, the test statistic has a chi-square distribu-
tion with p degrees of freedom, where p denotes
the number of predictors being assessed. The
p-value for this test is between 0.40 and 0.50,
which indicates no significant interaction.
Although the p-values for the Wald test (0.510)
and the LR test are not exactly the same, both
p-values lead to the same conclusion.

In general, the LR and Wald statistics may not
give exactly the same answer. Statisticians
have shown that of the two test procedures,
the LR statistic has better statistical properties,
so when in doubt, you should use the LR test.

We now focus on how to assess the effect of
treatment status adjusting for log WBC using
the model 2 output, again shown here.

There are three statistical objectives typically
considered. One is to test for the significance
of the treatment status variable, adjusted for
log WBC. Another is to obtain a point estimate
of the effect of treatment status, adjusted for
log WBC. And a third is to obtain a confidence
interval for this effect. We can accomplish
these three objectives using the output pro-
vided, without having to explicitly describe
the formula for the Cox model being used.

To test for the significance of the treatment
effect, the p-value provided in the table for the
Wald statistic is 0.002, which is highly signifi-
cant. Alternatively, a likelihood ratio (LR) test
could be performed by comparing the log like-
lihood statistic (144.559) for model 2 with the
log likelihood statistic for a model which does
not contain the treatment variable. This latter
model, which should contain only the log WBC
variable, is not provided here, so we will not
report on it other than to note that the LR test
is also very significant. Thus, these test results
show that using model 2, the treatment effect
is significant, after adjusting for log WBC.



Presentation: I. A Computer Example Using the Cox PH Model 105

EXAMPLE: (continued)

A point estimate of the effect of the treatment is
provided in the HR column by the value 3.648.
This value gives the estimated hazard ratio
(HR) for the effect of the treatment; in particu-
lar, we see that the hazard for the placebo
group is 3.6 times the hazard for the treatment
group. Note that the value 3.648 is calculated
as e to the coefficient of the treatment variable;
that is, e to the 1.294 equals 3.648.

To describe the confidence interval for the effect
of treatment status, we consider the output for
the extended table for model 2 given earlier.

EXAMPLE: (continued)

From the table, we see that a 95% confidence
interval for the treatment effect is given by
the range of values 1.595-8.343. This is a confi-
dence interval for the hazard ratio (HR), which
surrounds the point estimate of 3.648 previ-
ously described. Notice that this confidence
interval is fairly wide, indicating that the point
estimate is somewhat unreliable. As expected
from the low p-value of 0.002, the confidence
interval for HR does not contain the null value
of 1.

The calculation of the confidence interval for
HR is carried out as follows:

1. Compute a 95% confidence interval for the
regression coefficient of the Rx variable
(B1). The large sample formula is 1.294 plus
or minus 1.96 times the standard error
0.422, where 1.96 is the 97.5 percentile of
the standard normal or Z distribution.

2. Exponentiate the two limits obtained for

the confidence interval for the regression
coefficient of Rx.
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Stata: provides CI directly

Other packages: provide f and Sp

EDITED OUTPUT

Model 1:

Coef. Std. Err. p > |z| Haz. Ratio
Rx 1.509 0.410 0.000
No. of subjects = 42 Log likelihood = —86.380

Model 2:
Haz.
Coef. Std. Err. p>|z| Ratio
Rx 1.294 0.422 0.002 [3.648
log WBC 1.604 0.329 0.000 4.975

No. of subjects = 42 Log likelihood = —72.280

EXAMPLE: (continued)

HR for model 1 (4.523) is higher than
HR for model 2 (3.648)

Confounding: crude versus adjusted
HR are meaningfully different.

Confounding due to log WBC = must
control for log WBC, i.e., prefer model
2 to model 1.

If no confounding, then consider
precision: e.g., if 95% CI is narrower
for model 2 than model 1, we prefer
model 2.

The Stata output provides the required confi-
dence interval directly, so that the user does
not have to carry out the computations
required by the large sample formula. Other
computer packages may not provide the confi-
dence interval directly, but, rather, may pro-
vide only the estimated regression coefficients
and their standard errors.

To this point, we have made use of information
from outputs for models 2 and 3, but have not
yet considered the model 1 output, which is
shown again here. Note that model 1 contains
only the treatment status variable, whereas
model 2, shown below, contains log WBC in
addition to treatment status. Model 1 is some-
times called the “crude” model because it
ignores the effect of potential covariates of
interest, like log WBC.

Model 1 can be used in comparison with model
2 to evaluate the potential confounding effect
of the variable log WBC. In particular, notice
that the value in the HR column for the treat-
ment status variable is 4.523 for model 1, but
only 3.648 for model 2. Thus, the crude model
yields an estimated hazard ratio that is some-
what higher than the corresponding estimate
obtained when we adjust for log WBC. If we
decide that the crude and adjusted estimates
are meaningfully different, we then say that
there is confounding due to log WBC.

Once we decide that confounding is present,
we then must control for the confounder, in
this case, log WBC, in order to obtain a valid
estimate of the effect. Thus, we prefer model 2,
which controls for log WBC, to model 1, which
does not.

Note that if we had decided that there is no
“meaningful” confounding, then we would not
need to control forlog WBC to get a valid answer.
Nevertheless, we might wish to control for log
WBC anyhow, to obtain a more precise estimate
of the hazard ratio. That is, if the confidence
interval for the HR is narrower when using
model 2 than when using model 1, we would
prefer model 2 to model 1 for precision gain.
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EDITED OUTPUT: Confidence

Intervals

[95% Conf. Interval]

Rx model 1 |2.027 10.094
width = 8.067
width = 6.748
Rx model 2 [1.595 8.343
log WBC 2.609 9.486

EXAMPLE: (continued)

Model 2 is best model.

HR = 3.648 statistically significant

95% CI for HR: (1.6, 8.3)

Cox model formulae not specified

Analysis strategy and methods for
Cox model analogous to those for
logistic and classical linear models.

EXAMPLE: (continued)

Survival Curves Adjusted for log WBC

(Model 2)

S(1)
1.0

Placebo
(Rx=1)

8

16

24

Time

The confidence intervals for Rx in each model
are shown here at the left. The interval for Rx in
model 1 has width equal to 10.094 minus 2.027,
or 8.067; for model 2, the width is 8.343 minus
1.595, or 6.748. Therefore, model 2 gives a
more precise estimate of the hazard ratio than
does model 1.

Our analysis of the output for the three models
has led us to conclude that model 2 is the best
of the three models and that, using model 2, we
get a statistically significant hazard ratio of
3.648 for the effect of the treatment, with a
95% confidence interval ranging between 1.6
and 8.3.

Note that we were able to carry out this analy-
sis without actually specifying the formulae for
the Cox PH models being fit. Also, the strategy
and methods used with the output provided
have been completely analogous to the strategy
and methods one uses when fitting logistic
regression models (see Kleinbaum and Klein,
Logistic Regression, Chapters 6 and 7, 2010),
and very similar to carrying out a classical lin-
ear regression analysis (see Kleinbaum et al.,
Applied Regression Analysis, 4th ed., Chapter 16,
2008).

In addition to the above analysis of this data, we
can also obtain survival curves for each treat-
ment group, adjusted for the effects of log
WBC and based on the model 2 output. Such
curves, sketched here at the left, give additional
information to that provided by estimates and
tests about the hazard ratio. In particular, these
curves describe how the treatment groups com-
pare over the time period of the study.

For these data, the survival curves show that
the treatment group consistently has higher
survival probabilities than the placebo group
after adjusting for log WBC. Moreover, the
difference between the two groups appears to
widen over time.
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Adjusted survival

curves KM curves
Adjusted for No covariates
covariates

Use fitted Cox No Cox model
model fitted
Remainder:

Cox model formula
basic characteristics of Cox
model

e meaning of PH assumption

Note that adjusted survival curves are mathe-
matically different from Kaplan-Meier (KM)
curves. KM curves do not adjust for covariates
and, therefore, are not computed using results
from a fitted Cox PH model.

Nevertheless, for these data, the plotted KM
curves (which were described in Chapter 2) are
similar in appearance to the adjusted survival
curves.

In the remainder of this presentation, we des-
cribe the Cox PH formula and its basic charac-
teristics, including the meaning of the PH
assumption and the Cox likelihood.

II. The Formula for the
Cox PH Model

h(t,X) = ho(t)er;

X = (X1,X2,...X,)
explanatory/predictor variables

Xi

B

X
ho(1) x e;: g
Baseline Exponential
hazard
Involves ¢ Involves X’s but not
but not X’s t (X’s are time-
independent)

The Cox PH model is usually written in terms
of the hazard model formula shown here at
the left. This model gives an expression for
the hazard at time ¢ for an individual with a
given specification of a set of explanatory vari-
ables denoted by the bold X. That is, the bold X
represents a collection (sometimes called a
“vector”) of predictor variables that is being
modeled to predict an individual’s hazard.

The Cox model formula says that the hazard at
time ¢ is the product of two quantities. The first
of these, hy(t), is called the baseline hazard
function. The second quantity is the exponen-
tial expression e to the linear sum of B.X;, where
the sum is over the p explanatory X variables.

An important feature of this formula, which con-
cerns the proportional hazards (PH) assump-
tion, is that the baseline hazard is a function
of ¢, but does not involve the X’s. In contrast,
the exponential expression shown here, involves
the X’s, but does not involve ¢. The X’s here are
called time-independent X's.
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X’s involving ¢: time-dependent

Requires extended Cox model

(no PH)

Time-dependent variables:
Chapter 6

Time-independent variable:
Values for a given individual
do not change over time; e.g.,
SEX and SMK

Assumed not to change once
measured

AGE and WGT values do not
change much, or effect on survival
depends on one measurement.

X=X, = =X,=0

3 BiXi
h(t,X) = ho(1) e'ZI:

= /’lo(l) 6’0

= ho(t)
Baseline hazard

No X’s in model: h(¢,X) = hg (2).

ho(t) is unspecified.

Cox model: semiparametric
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It is possible, nevertheless, to consider X’s which
do involve t. Such X’s are called time-dependent
variables. If time-dependent variables are con-
sidered, the Cox model form may still be used,
but such a model no longer satisfies the PH
assumption, and is called the extended Cox
model.

The use of time-dependent variables is discussed
in Chapter 6. For the remainder of this presenta-
tion, we will consider time-independent X’s only.

A time-independent variable is defined to be
any variable whose value for a given individual
does not change over time. Examples are SEX
and smoking status (SMK). Note, however,
that a person’s smoking status may actually
change over time, but for purposes of the anal-
ysis, the SMK variable is assumed not to
change once it is measured, so that only one
value per individual is used.

Also note that although variables like AGE and
weight (WGT) change over time, it may be
appropriate to treat such variables as time-
independent in the analysis if their values do
not change much over time or if the effect of
such variables on survival risk depends essen-
tially on the value at only one measurement.

The Cox model formula has the property that if
all the X’s are equal to zero, the formula
reduces to the baseline hazard function. That
is, the exponential part of the formula becomes
e to the zero, which is 1. This property of the
Cox model is the reason why %(¢) is called the
baseline function.

Or, from a slightly different perspective, the
Cox model reduces to the baseline hazard
when no X’s are in the model. Thus, %y(t) may
be considered as a starting or “baseline” version
of the hazard function, prior to considering any
of the X’s.

Another important property of the Cox model
is that the baseline hazard, /y(?), is an unspeci-
fied function. It is this property that makes the
Cox model a semiparametric model.
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Example: Parametric Model

Weibull:
h(t X) = ?\.ptp_lp
where 1 = exp [Z BiXi:|

i=1

and kg (t) = ptP!

Semiparametric property

3
Popularity of the Cox model

In contrast, a parametric model is one whose
functional form is completely specified, except
for the values of the unknown parameters. For
example, the Weibull hazard model is a para-
metric model and has the form shown here,
where the unknown parameters are A, p, and
the By’s. Note that for the Weibull model, /¢ (¢)
is given by Apt®~! (see Chapter 7).

One of the reasons why the Cox model is so
popular is that it is semiparametric. We discuss
this and other reasons in the next section (III)
concerning why the Cox model is so widely
used.

Ill. Why the Cox PH
Model Is Popular

Cox PH model is “robust”: Will
closely approximate correct
parametric model

If correct model is:

Cox model will
Weibull = approximate
Weibull
Cox model will
Exponential = approximate
exponential

Prefer parametric model if sure of
correct model, e.g., use goodness-
of-fit test (Lee, 1982).

A key reason for the popularity of the Cox model
is that, even though the baseline hazard is not
specified, reasonably good estimates of regres-
sion coefficients, hazard ratios of interest, and
adjusted survival curves can be obtained for a
wide variety of data situations. Another way
of saying this is that the Cox PH model is a
“robust” model, so that the results from using
the Cox model will closely approximate the
results for the correct parametric model.

For example, if the correct parametric model is
Weibull, then use of the Cox model typically
will give results comparable to those obtained
using a Weibull model. Or, if the correct model
is exponential, then the Cox model results will
closely approximate the results from fitting an
exponential model.

We would prefer to use a parametric model if we
were sure of the correct model. Although there
are various methods for assessing goodness of fit
of a parametric model (for example, see Lee,
Statistical Methods for Survival Data Analysis,
1982), we may not be completely certain that a
given parametric model is appropriate.
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When in doubt, the Cox model is a
“safe” choice.

P
> OB
h(t,X) = ho(r) x e=1
Baseline | Exponential

hazard U
0 < h(1,X) < coalways

P
ho(t) x> BX;
i=1

——

Linear

\
Mightbe < 0

Even though h(t) is unspecified,
we can estimate the B’s.

Measure of effect: hazard ratio
(HR) involves only B’s, without
estimating /o(z).

Can estimate h(¢,X) and S(¢, X) for
Cox model using a minimum of
assumptions.

Thus, when in doubt, as is typically the case,
the Cox model will give reliable enough results
so that it is a “safe” choice of model, and the
user does not need to worry about whether the
wrong parametric model is chosen.

In addition to the general “robustness” of the
Cox model, the specific form of the model is
attractive for several reasons.

As described previously, the specific form of
the Cox model gives the hazard function as a
product of a baseline hazard involving ¢ and an
exponential expression involving the X’s with-
out ¢t. The exponential part of this product is
appealing because it ensures that the fitted
model will always give estimated hazards that
are non-negative.

We want such nonnegative estimates because,
by definition, the values of any hazard function
must range between zero and plus infinity, that
is, a hazard is always nonnegative. If, instead of
an exponential expression, the X part of the
model were, for example, linear in the X’s, we
might obtain negative hazard estimates, which
are not allowed.

Another appealing property of the Cox model is
that, even though the baseline hazard part of
the model is unspecified, it is still possible to
estimate the B’s in the exponential part of the
model. As we will show later, all we need are
estimates of the PB’s to assess the effect of
explanatory variables of interest. The measure
of effect, which is called a hazard ratio, is cal-
culated without having to estimate the baseline
hazard function.

Note that the hazard function 4(¢,X) and its
corresponding survival curves S(¢,X) can be
estimated for the Cox model even though the
baseline hazard function is not specified. Thus,
with the Cox model, using a minimum of
assumptions, we can obtain the primary infor-
mation desired from a survival analysis,
namely, a hazard ratio and a survival curve.
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Cox model preferred to logistic model.

Uses survival Uses (0,1) outcome;
times and ignores survival times
censoring and censoring

One last point about the popularity of the Cox
model is that it is preferred over the logistic
model when survival time information is avail-
able and there is censoring. That is, the Cox
model uses more information, the survival
times, than the logistic model, which considers
a (0, 1) outcome and ignores survival times and
censoring.

IV. ML Estimation of the
Cox PH Model

3 B Xi
1 (t,X) = ho(f) Py

ML estimates: Bi

Coef. ‘4&1

Rx 1.294| 0.422 0.002 3.648
log WBC [1.604 ]| 0.329 0.000 4.975

No. of subjects = 42 Log likelihood = —72.280

p > |z| Haz. Ratio

Estimated model:

ﬁ (I X) _ I’EO([) 61'294 Rx + 1.604 log WBC
b

ML estimates: maximize likelihood
function L

L = joint probability of observed
data = L(B)

We now describe how estimates are obtained
for the parameters of the Cox model. The
parameters are the B’s in the general Cox
model formula shown here. The corresponding
estimates of these parameters are called maxi-
mum likelihood (ML) estimates and are
denoted as B;.

As an example of ML estimates, we consider
once again the computer output for one of the
models (model 2) fitted previously from remis-
sion data on 42 leukemia patients.

The Cox model for this example involves two
parameters, one being the coefficient of the
treatment variable (denoted here as Rx) and
the other being the coefficient of the log WBC
variable. The expression for this model is
shown at the left, which contains the estimated
coefficients 1.294 for Rx and 1.604 for log white
blood cell count.

As with logistic regression, the ML estimates of
the Cox model parameters are derived by max-
imizing a likelihood function, usually denoted
as L. The likelihood function is a mathematical
expression which describes the joint probabil-
ity of obtaining the data actually observed on
the subjects in the study as a function of the
unknown parameters (the B’s) in the model
being considered. L is sometimes written nota-
tionally as L(B) where B denotes the collection
of unknown parameters.

The expression for the likelihood is developed
at the end of the chapter. However, we give a
brief overview below.
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L is a partial likelihood:

e considers probabilities only for
subjects who fail

e does not consider probabilities
for subjects who are censored

Number of failure times

™

k
L=LixLyxLyx-xL=]]L
=1

where
Ly = portion of L for the jth failure
time given the risk set R (¢¢)

Information on censored subjects
used prior to censorship.

Ly uses @b iln R(t(py)

I @fﬁ’

Censored later

Steps for obtaining ML estimates:

e form L from model
e maximize In L by solving

OlnL
B
i=1,...,p(# of parameters)

0

Solution by iteration:

e guess at solution
e modify guess in successive steps
e stop when solution is obtained
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The formula for the Cox model likelihood func-
tion is actually called a “partial” likelihood func-
tion rather than a (complete) likelihood function.
The term “partial” likelihood is used because the
likelihood formula considers probabilities only
for those subjects who fail, and does not explic-
itly consider probabilities for those subjects who
are censored. Thus the likelihood for the Cox
model does not consider probabilities for all sub-
jects, and so it is called a “partial” likelihood.

In particular, the partial likelihood can be writ-
ten as the product of several likelihoods, one
for each of, say, k failure times. Thus, at the f~th
failure time, L denotes the likelihood of failing
at this time, given survival up to this time. Note
that the set of individuals at risk at the jth
failure time is called the “risk set,” R(t(), and
this set will change — actually get smaller in size
— as the failure time increases.

Thus, although the partial likelihood focuses
on subjects who fail, survival time information
prior to censorship is used for those subjects
who are censored. That is, a person who is
censored after the f-th failure time is part of
the risk set used to compute Ls even though
this person is censored later.

Once the likelihood function is formed for a
given model, the next step for the computer is
to maximize this function. This is generally
done by maximizing the natural log of L,
which is computationally easier.

The maximization process is carried out by tak-
ing partial derivatives of log of L with respect to
each parameter in the model, and then solving a
system of equations as shown here. This solu-
tion is carried out using iteration. That is, the
solution is obtained in a stepwise manner, which
starts with a guessed value for the solution, and
then successively modifies the guessed value
until a solution is finally obtained.
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Statistical inferences for hazard
ratios: (See Section I, pages 100-107)

Test hypotheses | Confidence intervals

Wald test Large sample 95% CI
LR test

HR = ¢b fora (0, 1) exposure
variable (no interaction)

Once the ML estimates are obtained, we are
usually interested in carrying out statistical
inferences about hazard ratios defined in
terms of these estimates. We illustrated previ-
ously how to test hypotheses and form confi-
dence intervals for the hazard ratio in Section I
above. There, we described how to compute
a Wald test and a likelihood ratio (LR) test.
We also illustrated how to calculate a large
sample 95% confidence interval for a hazard
ratio. The estimated hazard ratio (HR) was
computed by exponentiating the coefficient of
a (0,1) exposure variable of interest. Note that
the model contained no interaction terms
involving exposure.

V. Computing the Hazard
Ratio

— h(1,X7)

HR = —=
h(t,X)

where

X* = (XT7 X;77X1T)

and
X = (X, X5, X,)

denote the set of X’s for two
individuals

To interpre'E ﬁl\?, want HR > 1, i.e.,
h(t, X*) > h(t, X).

Typical coding: X*: group with
larger h
X: group with
smaller /2

EXAMPLE: Remission Data
X = (X7, X5, . X;), where X; =
denotes placebo group.

X=Xy, X, ..., X,), where X; =0
denotes treatment group.

In general, a hazard ratio (HR) is defined as the
hazard for one individual divided by the hazard
for a different individual. The two individuals
being compared can be distinguished by their
values for the set of predictors, that is, the X’s.

We can write the hazard ratio as the estimate
of h(t,X*) divided by the estimate of A(z,X),
where X* denotes the set of predictors for one
individual, and X denotes the set of predictors
for the other individual.

Note that, as with an odds ratio, it is easier to
interpret an HR that exceeds the null value of 1
than an HR that is less than 1. Thus, the X’s are
typically coded so that group with the larger
hazard corresponds to X*, and the group with
the smaller hazard corresponds to X. As an
example, for the remission data described pre-
viously, the placebo group is coded as X] =1,
and the treatment group is coded as X; = 0.
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- x . SOBx;
o~ * i=1
AR =M X)) _datl) e
h(t’X) ~ ZB,-X,‘
7)e'=
R Zp:BiX,* LA
_ ) e B (X —x;
AR = Mol e~ _ )
) B X;
ho(t) e’z‘:

_ P
HR =exp| > Bi(X; - X;)
i=1

EXAMPLE

X = (Xl, Xz,. . .,Xp) = (Xl)r where Xl
denotes (0, 1) exposure status (p = 1)
XT = I,Xl =0

AR = €xXp [[:)'1 (XT _Xl)]

— explf1-0) =

Model 1:

Coef. Std. Err. P> |z| Haz. Ratio
Rx 0.410 0.000 (.523

EXAMPLE 2
Model 2:
Std. Haz.
Coef. Err. p>|z| Ratio
Rx 1.294| 0.422 0.002 3.648
log WBC (1.604) 0.329 0.000 4.975

X* = (1, log WBC), X = (0, log WBC)
HR for effect of Rx adjusted for log
WBC:

We now obtain an expression for the HR formula
in terms of the regression coefficients by substi-
tuting the Cox model formula into the numerator
and denominator of the hazard ratio expression.
This substitution is shown here. Notice that the
only difference in the numerator and denomina-
tor are the X*’s versus the X’s. Notice also that the
baseline hazards will cancel out.

Using algebra involving exponentials, the haz-
ard ratio formula simplifies to the exponential
expression shown here. Thus, the hazard ratio
is computed by exponentiating the sum of each
B; “hat” times the difference between X! and X;.

An alternative way to write this formula, using
exponential notation, is shown here. We will
now illustrate the use of this general formula
through a few examples.

Suppose, for example, there is only one X vari-
able of interest, X;, which denotes (0,1) expo-
sure status, so that p = 1. Then, the hazard
ratio comparing exposed to unexposed persons
is obtained by letting X] = 1 and X; = 0 in the
hazard ratio formula. The estimated hazard
ratio then becomes e to the quantity p; “hat”
times 1 minus 0, which simplifies to e to the

Bl “hat."

Recall the remission data printout for Model 1,
which contains only the Rx variable, again
shown here. Then the estimated hazard ratio
is obtained by exponentiating the coefficient
1.509, which gives the value 4.523 shown in
the HR column of the output.

As a second example, consider the output for
Model 2, which contains two variables, the Rx
variable and log WBC. Then to obtain the haz-
ard ratio for the effect of the Rx variable
adjusted for the log WBC variable, we let the
vectors X* and X be defined as X* = (1, log
WBC) and X = (0, log WBC). Here we assume
that log WBC is the same for X* and X though
unspecified.
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EXAMPLE 2: (continued)

HR = exp B (X; = X1) + B, (4 - Xo)|
= exp[1.294(1 — 0)
+1.604(log WBC — log WBC)]
= exp[1.294(1) + 1.604(0)] ="

General rule: If X; is a (0,1)
exposure variable, then

HR =éb (= effect of exposure

adjusted for other X’s)

provided no other X’s are product

terms involving exposure.

EXAMPLE 3
Model 3:
Std. Haz.
Coef. Err. p>|zl Ratio
Rx 2355 1.681 0.161 10.537

log WBC 1.803 0.447 0.000 6.067
Rx xlog —0.342 0.520 0.510 0.710
WBC

Want HR for effect of Rx adjusted for

log WBC.

Placebo subject:

X" =(X; =1, X; =log WBC,
X; =1 xlog WBC)

Treated subject:
X=(X; =0,X, =log WBC,
X3 =0 x log WBC)

3
R = exp {z B0 x)

i=1

HR = exp[2.355(1 — 0)
+ 1.803(log WBC — log WBC)
+ (—0.342)(1 x log WBC
—0 x log WBC)]
(= exp[2.355 — 0.342 log WBC])

The estimated hazard ratio is then obtained by
exponentiating the sum of two quantities, one
involving the coefficient 1.294 of the Rx vari-
able, and the other involving the coefficient
1.604 of the log WBC variable. Since the log
WBC value is fixed, however, this portion of
the exponential is zero, so that the resulting
estimate is simply e to the 1.294.

This second example illustrates the general rule
that the hazard ratio for the effect of a (0,1)
exposure variable which adjusts for other vari-
ables is obtained by exponentiating the esti-
mated coefficient of the exposure variable. This
rule has the proviso that the model does not
contain any product terms involving exposure.

We now give a third example which illustrates
how to compute a hazard ratio when the model
does contain product terms. We consider the
printout for Model 3 of the remission data
shown here.

To obtain the hazard ratio for the effect of Rx
adjusted for log WBC using Model 3, we con-
sider X* and X vectors which have three com-
ponents, one for each variable in the model. The
X* vector, which denotes a placebo subiject,
has components X} =1, X; =logWBC and
1xlogWBC. The X vector, which denotes a
treated subject, has components X; = 0, X, =
log WBC and X3 = 0 x log WBC. Note again that,
as with the previous example, the value for log
WBC is treated as fixed, though unspecified.

Using the general formula for the hazard ratio,
we must now compute the exponential of the sum
of three quantities, corresponding to the three
variables in the model. Substituting the values
from the printout and the values of the vectors
X* and X into this formula, we obtain the expo-
nential expression shown here. Using algebra,
this expression simplifies to the exponential of
2.355 minus 0.342 times log WBC.
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log WBC = 2:
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HR = exp[2.355 — 0.342(2)]
= =532

log WBC = 4:

HR = exp[2.355 — 0.342(4)]

=" =268

General rule for (0, 1) exposure
variables when there are product

terms:

[-ﬁ?zexp

:B +D 0 W.i:

where

B = coefficient of E

0; = coefficient of £ x W;

(ﬁk does not contain coefficients of

non-product terms)

EXAMPLE

Model 3:
E -

W,

B = coefficient of Rx /

b1 = coefficient of Rx x log WBC

AR (Model 3) = exp [B +4, log WBC]
= exp[2.355 — 0.

342 log WBC]

In order to get a numerical value for the hazard
ratio, we must specify a value for log WBC. For
instance, if log WBC = 2, the estimated hazard
ratio becomes 5.32, whereas if log WBC = 4,
the estimated hazard ratio becomes 2.68. Thus,
we get different hazard ratio values for dif-
ferent values of log WBC, which should make
sense since log WBC is an effect modifier in
Model 3.

The example we have just described using
Model 3 illustrates a general rule which states
that the hazard ratio for the effect of a (0,1)
exposure variable in a model which contains
product terms involving this exposure with
other X’s can be written as shown here. Note
that B “hat” denotes the coefficient of the expo-
sure variable and the 6 “hats” are coefficients of
product terms in the model of the form E x W;.
Also note that this formula does not contain
coefficients of nonproduct terms other than
those involving E.

For Model 3,  “hat” is the coefficient of the Rx
variable, and there is only one 6 “hat” in the
sum, which is the coefficient of the product
term Rx x log WBC. Thus, there is only one W,
namely W; = log WBC. The hazard ratio for-
mula for the effect of exposure is then given by
exponentiating B “hat” plus 6 “hat” times log
WBC. Substituting the estimates from the
printout into this formula yields the expression
obtained previously, namely the exponential of
2.355 minus 0.342 times log WBC.

VI. Interval Estimation:

Interaction

Model 2:

h(t, X) = hy (t)exp[B1Rx + p.log WBC]

HR = exp[]

We have previously illustrated in Model 2 of the
Remission Time Data how to obtain a 95%
interval estimate of the HR when there is only
one regression coefficient of interest, e.g., the
HR is of the form exp[f;].
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Large sample 95% confidence
interval:

exp {[31 +1.96 Vdrﬁl}
where
55, =\ V&rBl
No interaction: simple formula

Interaction: complex formula

Model 3:

h(t, X) = hq (t)exp[B;Rx + B,log WBC
+ B3 (Rx x log WBC)]

HR = exp[B; + Bslog WBC]

Interaction: variance calculation

difficult

No interaction: variance directly
from printout

HR = expll],
where £ = ; + Bslog WBC

95% CI for HR = exp[/]

exp[l + 1.961/ Var/)]

General Formula:
can consider any ¢, e.g.,

=B +6W1 +6,Wy + ... 6 Wy,

where X; = (0, 1) exposure variable
and B; = coeff of X,
8; = coeff of X;xW;, j=1,..., k

The procedure typically used to obtain a large
sample 95% confidence interval (CI) for the
parameter is to compute the exponential of the
estimate of the parameter plus or minus a per-
centage point of the normal distribution times
the estimated standard error of the estimate.
Note that the square root of the estimated vari-
ance is the standard error.

This computation is relatively simple when
there are no interaction effects in the model.
However, when there is interaction, the compu-
tational formula for the estimated standard
error is more complex.

Suppose we focus on Model 3, shown here
on the left, and, again, we assume that Rx is a
(0, 1) exposure variable of interest. Then the
formula for the HR for the effect of Rx
controlling for the variable log WBC is given
on the left underneath the model formula.

The difficult part in computing the CI for a HR
involving interaction effects is the calculation
for the estimated variance. When there is no
interaction, so that the parameter of interest is
a single regression coefficient, this variance is
obtained directly from the listing of estimated
coefficients and corresponding standard
EerTors.

For Model 3, we can alternatively write the
estimated HR formula as exp[f 1, where ¢ is
the linear function p; + Bslog WBC and / is
the estimate of this linear function using the
ML estimates.

To obtain a 95% CI for exp[{] we must expo-
nentiate the CI for ¢. The formula is shown on

the left.

This CI formula, though motivated by our
example using Model 3, is actually the general
formula for the 95% CI for any HR of interest
from a Cox PH model. In general, for a model
with a (0, 1) exposure variable X; and inter-
action terms X;xWj, ..., X;xWj, the linear
function may take any form of interest, as
shown in the left.
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Var() = Var(B, + 6,Wy + - - - 8 Wy)
where the estimates B, 0;, . .
correlated, so one must use

Var(B,), Cov(B,,0;) and Cov(é;, ;)

., 0 are

Computer packages SAS and
STATA compute Var ( as part of
the program options (see Computer
Appendix).

General formula for Var /:
Var(f) = Var(B,) + > W;Var(,)
J

+2) WiCov(By, )
J

+23 0 WWCov(o;, 1)
jk

e Variances and covariances pro-
vided in the computer output

e User specifies W’s values of
interest.

Model 3:
= B] + B310g WBC

Var(f) =Var(B,) + (log WBC)*Var(;)
+2(log WBC)*Cov(B,, B3)

95% CI for Rx in Model 3
(SAS edited output):

S.E. Conf Limits
3.8410 1.2894 21.9101
1.6520 0.8013 8.9700

logc WBC HR
2 5.3151
4 2.6809

CI results suggest log WBC by Rx
interaction but conflict with non-
significant interaction test result.
Note: small study size (n=42)
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When the HR involves interaction effects, the
estimated variance considers a linear sum of
estimated regression coefficients. Because the
coefficients in the linear sum are estimated
from the same data set, these coefficients are
correlated with one another. Consequently, the
calculation of the estimated variance must con-
sider both the variances and the covariances of
the estimated coefficients, which makes com-
putations somewhat cumbersome.

Nevertheless, most computer packages that
have procedures for fitting survival analysis
models like the Cox model provide for comput-
ing the estimated variance of linear functions
like ¢ as part of the program options. See the
Computer Appendix for details on the use of
the “contrast” option in SAS and the “lincom”
option in STATA.

For the interested reader, we provide here the
general formula for the estimated variance of
the linear function #.

In applying this formula, the user obtains the
estimated variances and covariances from the
variancecovariance output. The user must
specify values of interest for the effect modi-
fiers defined by the Ws in the model.

Applying this variance formula to Model 3, we
obtain the variance expression shown on the left.
Since log WBC is the only effect modifier here,
the user would need to specify log WBC values of
interest, e.g., log WBC =2 and log WBC=4.

Using the “contrast” option in SAS’s PHREG pro-
cedure, we show on the left computed 95% CI'’s
for the Rx variable for two choices of log WBC.
When log WBC is 2, the estimated HR is 5.32 with
a95% Cl given by the limits (1.29,21.91), whereas
when log WBC is 4, the estimated HR is 2.68 with
a 95% CI given by the limits (0.80, 8.97).

These results suggest the interaction of log WBC
with Rx, and they conflict with the previously
reported nonsignificance of the test for interac-
tion in Model 3, which might primarily be attrib-
uted to the small sample size (n=42) of this study.
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VII. Adjusted Survival
Curves Using the Cox
PH model

Two primary quantities:

1. estimated hazard ratios
2. estimated survival curves

No model: use KM cunzes

1.0
S(1)

Treatment
group

05 Placebo

group

10 20
t in weeks

Cox model: adjusted survival
curves (also step fuuctions).

Cox model hazard function:

zp:ﬁixi
h(t,X) = ho(t)e"™"

Cox model survival function:

Z;‘ﬂ,xi
S(t,X) = [So(n)]*"

Estimated survival function:

P
E Bi Xi
=1

$(1,X) = [So(0)]

So(t) and B; are provided by the
computer program. The X; must
be specified by the investigator.

The two primary quantities desired from a
survival analvsis point of viem are estimated
hazard ratios and estimated survival curves.
Having just described how to compute hazard
ratios, we now turn to estimation of survival
curves using the Cox model.

Recall that if no model is used to fit survival
data, a survival curve can be estimated using a
Kaplan-Meier method. Such KM curves are
plotted as step functions as shown here for
the remission data example.

When a Cox model is used to fit survival data,
survival curves can be obtained that adjust for
the explanatory variables used as predictors.
These are called adjusted survival curves,
and, like KM curves, these are also plotted as
step functions.

The hazard function formula for the Cox PH
model, shown here again, can be converted to
a corresponding survival function formula as
shown below. This survival function formula
is the basis for determining adjusted survival
curves. Note that this formula says that the
survival function at time ¢ for a subject with
vector X as predictors is given by a baseline
survival function Sy(¢) raised to a power equal
to the exponential of the sum of B; times X;.

The expression for the estimated survival func-
tion can then be written with the usual “hat”
notation as shown here.

The estimates of Sy() and f; are provided by
the computer program that fits the Cox model.
The X’s, however, must first be specified by the
investigator before the computer program can
compute the estimated survival curve.
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EXAMPLE: Model 2 Remission Data

}; (t X) _ 1’20 (t)el.294 Rx + 1.604 log WBC
$ (t:X) =[S (£)]5P(1:294 Rx + 1604 log WBC)

Specify values for X = (Rx, log WBC)

Rx =1, log WBC = 2.93:
S(l‘ X) . [S (t)] exp(filﬁﬂizlog W'BC)
4 ]exp (1.294(0.5)+1.604(2.93))

= [So(?)
= [So(?)

] exp(5.35) ] 210.6

[§0(t)

Rx =0, log WBC = 2.93:
$(t,X) = [So(t )]exp (1.294(0)-+1.604(2.93))
= [So(0)] ={[So()]

exp(4.70) 109.9

Adjusted Survival Curves

Rx =1, log WBC = 2.93:
S (¢,X) = [So (0]*°°

Rx =0, log WBC = 2.93:
S @,X) =[So (1)1

Typically, use X = X or X edian

Computer uses X

EXAMPLE: (continued)

Remission data (n = 42):

log WBC =2.93

For example, if we consider model 2 for the
remission data, the fitted model written in terms
of both the hazard function and corresponding
survival function is given here.

We can obtain a specific survival curve by
specifying values for the vector X, whose com-
ponent variables are Rx and log WBC.

For instance, if Rx = 1 and log WBC = 2.93, the
estimated survival curve is obtained by sub-
stituting these values in the formula as shown
here, and carrying out the algebra to obtain the
expression circled. Note that the value 2.93 is
the overall mean log WBC for the entire dataset
of 42 subjects.

Also, if Rx = 0 and log WBC = 2.93, the esti-
mated survival curve is obtained as shown here.

Each of the circled expressions gives adjusted
survival curves, where the adjustment is for
the values specified for the X’s. Note that for
each expression, a survival probability can be
obtained for any value of .

The two formulae just obtained, again shown
here, allow us to compare survival curves for
different treatment groups adjusted for the
covariate log WBC. Both curves describe esti-
mated survival probabilities over time assum-
ing the same value of log WBC, in this case, the
value 2.93.

Typically, when computing adjusted survival
curves, the value chosen for a covariate being
adjusted is an average value like an arithmetic
mean or a median. In fact, most computer pro-
grams for the Cox model automatically use the
mean value over all subjects for each covariate
being adjusted.

In our example, the mean log WBC for all
42 subjects in the remission data set is 2.93.
That is why we chose this value for log WBC
in the formulae for the adjusted survival curve.
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General formulae for adjusted
survival curves comparing two
groups:

Exposed subjects:

S(t,X;) = [S(,(t)]exp [Bl Z/:G X}

Unexposed subjects:

$(.X0) = [So0)] [ﬁ‘ e X}

General formula for adjusted
survival curve for all
covariates in the model:

$(1.X) = [Sor) > ¥

EXAMPLE

Single survival curve for Cox model
containing Rx and log WBC:

Rx =0.50

log WBC = 2.93
§(l, X) _ [S,O (t)] exp(Ble+leog WBC)
o ]exp(14294(05)+1604(2.93))

= [So(t)
[So(t)]

exp(5.35) ]2106

=|[So(®)

Compute survival probability by
specifying value for ¢ in
S(t, X) = [So ()"

Computer uses t’s which are failure
times.

More generally, if we want to compare survival
curves for two levels of an exposure variable,
and we want to adjust for several covariates, we
can write the formula for each curve as shown
here. Note that we are assuming that the expo-
sure variable is variable X;, whose estimated
coefficient is B; “hat,” and the value of X; is 1
for exposed and 0 for unexposed subjects.

Also, if we want to obtain an adjusted survival
curve which adjusts for all covariates in the
model, the general formula which uses the
mean value for each covariate is given as
shown here. This formula will give a single
adjusted survival curve rather than different
curves for each exposure group.

To illustrate this formula, suppose we again
consider the remission data, and we wish to
obtain a single survival curve that adjusts for
both Rx and log WBC in the fitted Cox model
containing these two variables. Using the mean
value of each covariate, we find that the mean
value for Rx is 0.5 and the mean value for log
WBC is 2.93, as before.

To obtain the single survival curve that adjusts
for Rx and log WBC, we then substitute the
mean values in the formula for the adjusted
survival curve for the model fitted. The formula
and the resulting expression for the adjusted
survival curve are shown here. (Note that for
the remission data, where it is of interest to
compare two exposure groups, the use of a
single survival curve is not appropriate.)

From this expression for the survival curve, a
survival probability can be computed for any
value of ¢ that is specified. When graphing this
survival curve using a computer package, the
values of ¢ that are chosen are the failure times
of all persons in the study who got the event.
This process is automatically carried out by the
computer without having the user specify each
failure time.
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EXAMPLE

Adjusted Survival Curves for
Treatment and Placebo Groups
S(t)

1.0 (Remission data)

0.8

0.6 Treatment (Rx = 0)

L [Soo1'®?
Placebo
Rx =1
0.2 —(A )
[So(0)]*?
0 1
8 16 24
Time

Next section: PH assumption
e explain meaning

e when PH not satisfied
Later presentations:

e how to evaluate PH
e analysis when PH not met
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The graph of adjusted survival curves obtained
from fitting a Cox model is usually plotted as a
step function. For example, we show here the
step functions for the two adjusted survival
curves obtained by specifying either 1 or 0 for
treatment status and letting log WBC be the
mean value 2.93.

We now turn to the concept of the proportional
hazard (PH) assumption. In the next section,
we explain the meaning of this assumption and
we give an example of when this assumption is
not satisfied.

In later presentations, we expand on this subject,
describing how to evaluate statistically whether
the assumption is met and how to carry out the
analysis when the assumption is not met.

VIII. The Meaning of the
PH Assumption

PH: HR is constant over time, i.e., h
(¢,X*) = constant x 4 (t,X)

i };A(t, X*)
h(t X)

ho(t) exp| Y2 B X; |

fo(t) exp 32 B Xi|

p
= exp [Z B (X7 — X
i=1

where X* = (X’l‘7 X;, ..., X;) and
= (XII XZ; SR Xp)

denote the set of X’s for two

individuals.

The PH assumption requires that the HR is con-
stant over time, or equivalently, that the hazard
for one individual is proportional to the hazard
for any other individual, where the proportion-
ality constant is independent of time.

To understand the PH assumption, we need
to reconsider the formula for the HR that
compares two different specifications X* and
X for the explanatory variables used in the
Cox model. We derived this formula previously
in Section V, and we show this derivation again
here. Notice that the baseline hazard function
ho(t) appears in both the numerator and
denominator of the hazard ratio and cancels
out of the formula.
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EA(I, X*) = exp lzp: Bi (X,* N Xi)
i=1

h(t,X)

does not involve t.

Constant

p A~
exp [Z B: (X7 —X;)
P

then

=
@
2

0

l/;(th*) _ é

h(t,X)

HR (X*versus X)

h(t,X*) = 0h (1,X)

Proportionality constant
(not dependent on time)

EXAMPLE: Remission Data

}’;(l‘ X) — 1’;0(1‘)61‘294Rx+1'604 log WBC

- h(t, Rx = 1, log WBC = 2.93)
h(t, Rx = 0, log WBC = 2.93)
= exp[1.294] = 3.65 Constant

Placebo

h(t, Rx = 1, log WBC = 2.93)
=3.65h (t, Rx = 0, log WBC = 2.93)

Treatment
3.65 = proportionality constant

The final expression for the hazard ratio
therefore involves the estimated coefficients
B; “hat” and the values of X* and X for each
variable. However, because the baseline hazard
has canceled out, the final expression does not
involve time ¢.

Thus, once the model is fitted and the values
for X* and X are specified, the value of the
exponential expression for the estimated haz-
ard ratio is a constant, which does not depend
on time. If we denote this constant by 6 “hat,”
then we can write the hazard ratio as shown
here. This is a mathematical expression which
states the proportional hazards assumption.

Graphically, this expression says that the esti-
mated hazard ratio comparing any two indivi-
duals plots as a constant over time.

Another way to write the proportional hazards
assumption mathematically expresses the haz-
ard function for individual X* as 6 “hat” times
the hazard function for individual X, as shown
here. This expression says that the hazard
function for one individual is proportional to
the hazard function for another individual,
where the proportionality constant is 6 “hat,”
which does not depend on time.

To illustrate the proportional hazard assump-
tion, we again consider the Cox model for the
remission data involving the two variables Rx
and log WBC. For this model, the estimated
hazard ratio that compares placebo (Rx = 1)
with treated (Rx = 0) subjects controlling for
log WBC is given by e to the 1.294, which is
3.65, a constant.

Thus, the hazard for placebo group (Rx = 1) is
3.65 times the hazard for the treatment group
(Rx = 0), and the value, 3.65, is the same
regardless of time. In other words, using the
above model, the hazard for the placebo group
is proportional to the hazard for the treatment
group, and the proportionality constant is 3.65.
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EXAMPLE: PH Not Satisfied

To further illustrate the concept of proportional
hazards, we now provide an example of a situ-
ation for which the proportional hazards
assumption is not satisfied.

For our example, we consider a study in which
cancer patients are randomized to either surgery
or radiation therapy without surgery. Thus, we
have a (0,1) exposure variable denoting surgery
status, with 0 if a patient receives surgery and 1 if
not. Suppose further that this exposure variable
is the only variable of interest, so that a Cox PH
model for the analysis of this data, as shown
here, will contain only the one variable E, denot-
ing exposure.

Now the question we consider here is whether
the above Cox model containing the variable E
is an appropriate model to use for this situa-
tion. To answer this question we note that
when a patient undergoes serious surgery, as
when removing a cancerous tumor, there is
usually a high risk for complications from sur-
gery or perhaps even death early in the recov-
ery process, and once the patient gets past this
early critical period, the benefits of surgery,
if any, can then be observed.

Thus, in a study that compares surgery to no
surgery, we might expect to see hazard func-
tions for each group that appear as shown here.
Notice that these two functions cross at about
3 days, and that prior to 3 days, the hazard for
the surgery group is higher than the hazard for
the no surgery group, whereas after 3 days, the
hazard for the surgery group is lower than the
hazard for the no surgery group.

Looking at the above graph more closely, we
can see that at 2 days, when ¢ = 2, the hazard
ratio of non-surgery (E = 1) to surgery (E = 0)
patients yields a value less than 1. In contrast,
att = 5 days, the hazard ratio of nonsurgery to
surgery yields a value greater than 1.
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EXAMPLE: (continued)

Given the above description, HR is
not constant over time.

Cox PH model inappropriate because
PH model assumes constant HR:

h(t,X) = ho(t)eP”
I‘TR :}f(l’, EZI)ZCG
h(t, E =0)

General rule:
If the hazards cross, then a Cox PH
model is not appropriate.

Analysis when Cox PH model not
appropriate? See Chapters 5 and 6.

EXAMPLE: (continued)

Surgery study analysis options:

e stratify by exposure (use KM
curves)

e start analysis at 3 days; use Cox
PH model

o fit PH model for < 3 days and for
> 3 days; get HR (< 3 days) and
HR (> 3 days)

e include time-dependent variable
(e.g., E x t); use extended Cox
model

Thus, if the above description of the hazard
functions for each group is accurate, the haz-
ard ratios are not constant over time. That is,
the hazard ratio is some number less than 1
before 3 days and greater than 1 after 3 days.

It is therefore inappropriate to use a Cox PH
model for this situation, because the PH model
assumes a constant hazard ratio across time,
whereas our situation yields a hazard ratio that
varies with time.

In fact, if we use a Cox PH model, shown here
again, the estimated hazard ratio comparing
exposed to unexposed patients at any time is
given by the constant value e to the § “hat,”
which does not vary over time.

This example illustrates the general rule that if
the hazards cross, then the PH assumption
cannot be met, so that a Cox PH model is inap-
propriate.

It is natural to ask at this point, if the Cox PH
model is inappropriate, how should we carry
out the analysis? The answer to this question is
discussed in Chapters 5 and 6. However, we
will give a brier reply with regard to the surgery
study example just described.

Actually for the surgery study there are several
oplions available for the analysis. These include:

e analyze by stratifying on the exposure
variable; that is, do not fit any model, and,
instead oblain Kaplan-Meier curves for
each exposure group separately;

e start the analysis at three days, and use a
Cox PH model on three-day survivors;

e fit Cox model for less than three days and a
different Cox model lor greater than three
days to get two difterent hazard ratio
estimates, one for each of these two lime
periods;

e fit a modified Cox model that includes a
time-dependent variable which measures
the interaction of exposure with time. This
model is called an extended Cox model.



Different options may lead to dif-

ferent conclusions.

Hazards
Cross
but

= PH not met

? = PH met

See Chapter 4: Evaluating PH
Assumption
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Further discussion of these options is given in
subsequent chapters. We point out here, that
different options may lead to different con-
clusions, so that the investigator may have to
weigh the relative merits of each option in light
of the data actually obtained before deciding
on any particular option as best.

One final comment before concluding this
section: although we have shown that when
the hazards cross, the PH assumption is not
met, we have not shown how to decide when
the PH assumption is met. This is the subject
of Chapter 4 entitled, “Evaluating the PH
Assumption.”

IX. The Cox Likelihood

Likelihood

e Typically based on outcome
distribution

e Outcome distribution not
specified for Cox model

e Cox likelihood based on order

of events rather than their
distribution
O Called partial likelihood

Hlustration

Scenario:

e Gary, Larry, Barry have lottery

tickets
e Winning tickets chosen at
times tg, ty, ...

Each person ultimately chosen

Can be chosen only once

Question:

What is the probability that the

order chosen is as follows?

1. Barry
2. Gary
3. Larry

Typically, the formulation of a likelihood
function is based on the distribution of the
outcome. However, one of the key features of
the Cox model is that there is not an assumed
distribution for the outcome variable (i.e., the
time to event). Therefore, in contrast to a para-
metric model, a full likelihood based on the
outcome distribution cannot be formulated
for the Cox PH model. Instead, the construc-
tion of the Cox likelihood is based on the
observed order of events rather than the
joint distribution of events. Thus the Cox likeli-
hood is called a “partial” likelihood.

To illustrate the idea underlying the formula-
tion of the Cox model, consider the following
scenario. Suppose Gary, Larry, and Barry are
each given a lottery ticket. Winning tickets are
chosen at times t; (j = 1,2, ...). Assume each
person is ultimately chosen and once a person
is chosen he cannot be chosen again (i.e., he is
out of the risk set). What is the probability that
the order each person is chosen is first Barry,
then Gary, and finally Larry?



128 3. The Cox Proportional Hazards Model and Its Characteristics

Answer:
. 1 1 1 1
Probability = 3 X 3 X 1%%
TN
Barry Gary  Larry
Scenario:

Barry - 4 tickets
Gary - 1 ticket
Larry - 2 tickets

Question:
What is the probability that the
order chosen is as follows?

1. Barry
2. Gary
3. Larry
Answer:
o4 1 2 4
Probability = TX3X5= 57

For this scenario

Subject’s number of tickets
affects probability

For Cox model
Subject’s pattern of covariates

affects likelihood of ordered
events

The probability that Barry’s ticket is chosen
before Gary’s and Larry’s is one out of three.
Once Barry’s ticket is chosen, it cannot be
chosen again. The probability that Gary’s ticket
is then chosen before Larry’s is one out of
two. Once Barry’s and Gary’s tickets are chosen,
they cannot be chosen again which means that
Larry’s ticket must be chosen last. This yields a
probability of 1/6 for this given order of events
(see left).

Now consider a modification of the previous
scenario. Suppose Barry has 4 tickets, Gary
has 1 ticket, and Larry has 2 tickets; now what
is the probability that the order each person is
chosen is first Barry, then Gary, and finally

Larry?

Barry, Gary, and Larry have 7 tickets in all and
Barry owns 4 of them so Barry’s probability of
being chosen first is 4 out of 7. After Barry is
chosen, Gary has 1 of the 3 remaining tickets
and after Barry and Gary are chosen, Larry
owns the remaining 2 tickets. This yields a
probability of 4/21 for this order (see left).

For this scenario, the probability of a particu-
lar order is affected by the number of tickets
held by each subject. For a Cox model, the
likelihood of the observed order of events is
affected by the pattern of covariates of each
subject.



ID TIME STATUS SMOKE
Barry 2 1 1
Gary 3 1 0
Harry 5 0 0
Larry 8 1 1

SURVT = Survival time (in years)

STATUS = 1 for event, 0 for censor-

ship

SMOKE = 1 for a smoker, 0 for a
nonsmoker

Cox PH model
h(t) = ho(r)ePSMOKE

ID Hazard
Barry  ho(t)ePs
Gary  ho(t)e°
Harry  ho(t)e®
Larry  ho(t)eP

Individual hazards

(Cox likeli-

hood) analogous to number of tick-
ets (lottery scenario) For example,
smokers analogous to persons with
extra lottery tickets

Cox Likelihood

L=

g [ho(l)
h()(l‘)eﬁ':l
h()(t)eﬁl

“|

Likelihood is product of 3 terms

hg(f)eﬁl

|:/’l()(l‘)€ﬁl + h()(l‘)

ho(l‘)eo

L=L1><L2><L3

b= {homeﬁn o,

L

h()([)€B'

6’0 + /’lo(t)eo + ho([)€B|

|

€0 + ho(1)e® + ho(r)eb

/’LQ(I)EO

2 {home‘)

+ /’lo(l‘)eo + ho(l)e'ﬁl

|

1)e0 + ho(t)e® + ho(t)ePr

|

|
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To illustrate this connection, consider the
dataset shown on the left. The data indicate
that Barry got the event at TIME = 2 years.
Gary got the event at 3 years, Harry was censored
at 5 years, and Larry got the event at 8 years.
Furthermore, Barry and Larry were smokers
whereas Gary and Harry were nonsmokers.

Consider the Cox proportional hazards model
with one predictor, SMOKE. Under this model
the hazards for Barry, Gary, Harry, and Larry
can be expressed as shown on the left. The
individual hazards are determined by whether
the subject was a smoker or nonsmoker.

The individual level hazards play an analogous
role toward the construction of the Cox likeli-
hood as the number of tickets held by each
subject plays for the calculation of the prob-
abilities in the lottery scenario discussed ear-
lier in this section. The subjects who smoke are
analogous to persons given extra lottery tick-
ets, thereby affecting the probability of a par-
ticular order of events.

On the left is the Cox likelihood for these data.
Notice the likelihood is a product of three
terms, which correspond to the three event
times. Barry got the event first at TIME =
2 years. At that time, all four subjects were
at risk for the event. The first product (L;) has
the sum of the four subjects’ hazards in the
denominator and Barry’s hazard in the numer-
ator. Gary got the event next at 3 years when
Gary, Harry, and Larry were still in the risk set.
Consequently, the second product (L,) has the
sum of the three hazards for the subjects still
at risk in the denominator and Gary’s hazard in
the numerator. Harry was censored at 5 years,
which occurred between the second and third
event. Therefore, when Larry got the final event
at 8 years, nobody else was at risk for the event.
As a result, the third product (L3) just has
Larry’s hazard in the denominator and the
numerator.
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ty, time = 2, four at risk (L)
t,, time = 3, three at risk (L,)
t3, time = 8, one at risk (L)

For each term:

Numerator - single hazard
Denominator — sum of hazards

Baseline hazard, ho(t) cancels

o
L =
Lﬁl +e0 + el + eﬁl}
P b
o]« [

Thus, L does not depend on hg(t)

Data A
ID TIME STATUS SMOKE
Barry 2 1 1
Gary 3 1 0
Harry 5 0 0
Larry 3 1 1
Data B
ID TIME STATUS SMOKE
Barry 1 1 1
Gary 7 1 0
Harry 8 0 0
Larry 63 1 1

Comparing datasets

e TIME variable differs
e Order of events the same
e Cox PH likelihood the same

To summarize, the likelihood in our example
consists of a product of three terms (L4, L,, and
L3) corresponding to the ordered failure times
(t1, tz, and t3). The denominator for the term
corresponding to time t; (j = 1, 2, 3) is the sum
of the hazards for those subjects still at risk at
time t;, and the numerator is the hazard for the
subject who got the event at t;.

A key property of the Cox likelihood is that
the baseline hazard cancels out in each term.
Thus, the form of the baseline hazard need not
be specified in a Cox model, as it plays no role
in the estimation of the regression parameters.
By factoring hy(t) in the denominator and then
canceling it out of each term, the likelihood
for Barry, Gary, and Larry can be rewritten as
shown on the left.

As we mentioned earlier, the Cox likelihood is
determined by the order of events and censor-
ships and not by the distribution of the outcome
variable. To illustrate this point, compare data-
sets A and B on the left, and consider the likeli-
hood for a Cox PH model with smoking status
as the only predictor. Although the values for
the variable TIME differ in the two datasets, the
Cox likelihood will be the same using either
dataset because the order of the outcome
(TIME) remains unchanged.
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General Approach

e k failure times

e Likelihood a product of K terms

e Construction of each term
similar to Barry, Gary, and Larry

L=L1 ><L2><L3><...><Lk
k
:HLf
f=1

Obtaining maximum
estimates

likelihood

Solve system of equations
Oln L
9B,

=0, i=1,2,3,....p

p = # of parameters
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We have used a small dataset (four observations
with three failure times) for ease of illustration.
However, the approach can be generalized.
Consider a dataset with k failure times and let
L; denote the contribution to the likelihood
corresponding to the f-th failure time. Then the
Cox likelihood can be formulated as a product of
each of the k terms as shown on the left. Each of
the terms L is constructed in a similar manner
as with the data for Gary, Larry, and Barry.

Once the likelihood is formulated, the question
becomes: which values of the regression para-
meters would maximize L? The process of max-
imizing the likelihood is typically carried out
by setting the partial derivative of the natural
log of L to zero and then solving the system of
equations (called the score equations).

X. Using Age as the
Time Scale

Outcome variable:
time until an event occurs

where “time” is measured as

time-on-study (years, months,
etc., of follow-up from study
entry)
or
age at follow-up

Time 0:
starting time of the true survival
time

Possible choices for time 0:

Study entry

Beginning of treatment
Disease onset

Disease diagnosis
Surgery

Point in calendar time
Birth

Conception

Recall that when we introduced the topic of
survival analysis in Chapter 1, we wrote that
the “time” variable used as the outcome vari-
able could be measured as time-on-study (i.e.,
follow-up time since study entry) in years,
months, weeks, or days from the beginning of
follow-up. We also wrote that, alternatively, we
might use age as the time scale, so that time is
measured as age at follow-up until either
an event or censorship occurs. In this section,
we focus on the use of age as the time scale, and
describe when such use is appropriate, provide
the form of the Cox PH model in this situation,
and illustrate its use.

A key decision in any survival analysis is where
to define the starting point for determining
individual’s “true” survival time, which we call
time 0. Depending on the study, choices for
time 0 might be: the time the subject enters the
study, the time the subject begins treatment,
the time of disease onset, the time of diagnosis,
a point in calendar time, the time of a seminal
event (e.g., surgery), birth, or conception. If we
define time O at birth, then an individual’s
survival time is represented by their age.



132 3. The Cox Proportional Hazards Model and Its Characteristics

Time 0 not necessarily equal to to,
where
to = time when subject’s survival
time is first observed
e.g., if survival time is measured by
age and subject enters study at
age 45
3
to = age 45 but time 0 < age 45
since time 0 = age-at-birth

Left truncation:

e subject not observed before tg

e if subject has event before t,
then not included in the study

e if subject has event after to,
then included in the study and
assumed not at risk for event
until tg

Two types of left truncation:
Type 1: subject has event before tq
and not included in the

study,
e.g.,
E causes death before study entry
U
Bias: effect of E underestimated
Type 2:tg >0
and
t> 1

where t = observed survival time

Study entry = subject survives

until tq

Type 1: subject not included in the
study

Type 2: subject included in the study

Left censored at t,|

Subject A F———X——0
2

x denotes failure
0 denotes censored

| time
tA

t,=0

Subject first observed

Time 0 is not necessarily the time point where a
subject’s survival time is first observed (which
we call time tg). For example, if survival time is
measured by age at follow-up and a subject
enters the study at age 45, then ty=45 years
for this subject. In this example, the subject’s
survival time has been left-truncated at t, = 45,
which we now define.

Left truncation at time t, is defined as follows:

The subject is not observed from time 0 to t,.
If the subject has the event before time ty, then
that subject is not included in the study. If the
subject has the event after time to, the subject is
included in the study but with the caveat that
the subject was not at risk to be an observed
event until time tg.

We note that there are two types of left trunca-
tion at to. The first type of left truncation occurs
if the subject has the event before ty and thus is
not included in the study. If, for example, the
exposure (E) under study causes individuals to
die before they could enter the study, this could
lead to a (selective) survival bias that would
underestimate the effect of exposure.

The second type of left truncation occurs if the
subject survives beyond time tq (i.e., t > ty). This
is required in order for the subject to have his/
her survival time observed.

Thus, a condition of the subject’s entry into the
study is that they survive until time tq. If they
do not meet that condition, then their left trun-
cation is of the first type and thus not included
in the study. If they do survive past time to,
then their left truncation is of the second type.

Left truncation (of both types) at time t is com-
monly confused with left censorship at time t.
If a subject is left censored at time t, then that
subject is (i) included in the study, (ii) known
to be event free at time 0, (iii) known to be at
risk for the event after time 0, and (iv) known to
have had the event before time t but with the
exact time of event being unknown.
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Example: left censored data
Subject A: to=0
th=6
truet=?<6

\[Type 1left truncation
, ,
' '

Subject B m———x

. , Type 2 left truncation

X

Subject C .
I . I

0 tgty tc
\

observation begins

time

Example: Type 1 left truncation
Subject B: Time 0 < t,
not included in the
study
Example: Type 2 left truncation
Subject C: Time 0 < tq but first
observed at tg

Being observed at time t means:
If event at t = recorded event at t

2 approaches for measuring sur-
vival time:

Time-on-study
Vs

Age-at-follow-up

e Choice determines the risk set.
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For example, for subject A in the above graph,
suppose death is the outcome and a patient is
first treated for some illness at the time of their
first visit to the clinic (ty=0). Further, suppose
that the patient does not show up at the next
scheduled clinic visit 6 months later because
that patient had died in the interim. If the spe-
cific month of death is unable to be ascertained,
then that patient is included in the study and
left censored at ty, = 6 months.

In contrast, the diagram on the left illustrates
the two types of left truncation.

In this diagram, subject B provides an example of
left truncation of the first type that would occur if
an individual died between disease onset (time 0)
and disease diagnosis (time tp) and thus was
never included in the study. In this example,
having the disease was a necessary condition
for study inclusion, whereas subject B died
before it was known that he/she had the disease.

Subject C illustrates Type 2 left truncation,
since he/she developed the disease (time 0)
prior to being diagnosed with the disease at
time to and was observed after t,.

One clarifying point is that when we say a sub-
ject is observed at time t, we do not necessarily
mean that the subject is observed in an active
prospective manner. Rather, what we mean by
a subject being observed at time t is as follows:
if that subject had an event at time t, then the
subject would be recorded in the study as having
had an event at time t.

We now compare two approaches of measur-
ing survival time. One approach is to measure
survival time as time-on-study and the other is
to measure survival time as age-at-follow-up
until either an event or censorship. The choice
of approach determines the risk set at the
time of each event. We illustrate this idea with
hypothetical data.
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Hypothetical Survival Data

Subject t d ag a
H 2 1 65 67
I 6 0 65 71
J 6 0 74 80
K 3 1 75 78
Time-on-study Layout

f t(f) nfg my qr R(t(f))
1 2 4 0 0 H,I,J K
2 3 3 2 2 LLJLK

Time-on-study as Time Scale

H

|

J 6
K

|
o
00—

o 2 10
R(ty=2)={H, 1 J, K}

I and J censored after to) = q, =2
{I, J, K} contained in {H, I, J, K}

Age as Time Scale Layout

f ap nf mg qe  R(ap)
1 67 2 1 1 H1I
2 78 2 1 1 J K

Age as Time Scale w. Left Truncation

T T T
65 6769 71 73 75 77 79 81
First failure: R(a¢) = 67) = {H, I}

I still at risk at a¢;y = 67 but
J and K not in study at a¢) = 67

Consider the data shown on the left on four
different subjects, for each of which we have
identified time-on-follow-up (t), whether failed
or censored (d), age at study entry (ag), and age
at the end of follow-up (a). Note that t is simply
a — ay, the difference between age at follow-up
time and age at study entry.

Using time-on-study (i.e., from entry into the
study) as the time scale, the data layout based
on ordered follow-up times is shown on the
left, below which is shown a graphical repre-
sentation that follows each subject from the
time of study entry. There are only two failures
and these occur at follow-up times 2 (subject H)
and 3 (subject K).

The risk set at the first failure time (t;) =2)
consists of all four subjects, and the risk set at
the second failure time (t) =3) contains sub-
jects I, J, and K. Subjects I and J are censored
after time t(;) =3, i.e., the value for q, is 2 at this
time. Notice that the risk set at time t) =3 is
contained in the risk set at time t(;) =2, which
is generally true when the outcome variable
being considered is time-on-follow-up. The data
layout represented here, in which the size of the
risk set always decreases over time, is called a
closed cohort.

Now let’s consider the data layout that would
result if we used age as the time scale, which is
shown on the left. Below this layout is a graph-
ical representation that follows each subject
from age at study entry.

Using age as the time scale, the first failure
time is at age a¢y) = 67 (for subject H), and
there are two subjects (H and I) in the risk set
at this time; subject I is in the risk set at ag) =
67 because (s)he entered the study at age 65
and was still at risk when subject H failed.
However, because subjects J and K did not
enter the study until ages 74 and 75, these
subjects are not in the risk set at a(;) =67.
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Second failure: R(a) =78) ={J, K}

H and Jno longer atrisk at aiz) =78

I censored between ag;) = 67 and
ap) =178 =q; =1

J censored after apy =78 = q, =1

{J, K]} not contained in {H, I}

Time-on-Study vs. Age as Time
Scale

e Closed cohort vs. Open cohort
e How we decide which to use?

Key issue:
Did all subjects first become at
risk at their study entry?

Clinical trial:

e Subjects start to be followed for
the outcome after random
allocation

e Reasonable to assume subjects
start to be at risk upon study
entry

U
Time-on-Study typically used
as the outcome
(Covariates may also be controlled)

Observational study:

e Subjects already at risk prior to
study entry

e Unknown time or age when
first at risk
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The second failure time is at age a;;) = 78 (for
subject K). The only two subjects in the risk set
at a(z) = 78 are subjects J and K, since subject H
failed at age 67 and subject I was censored at
age 71. The values in the q column are 1 at
failure age 67 (for subject I) and 1 at failure
age 72 (for subject J). In contrast to the previ-
ous data layout, the risk set at the later failure
age (containing J, K) is not a subset of the risk
set at the first failure age (containing H, I), but,
rather, is a mutually exclusive subset. This data
layout, in which the size of the risk set may
increase or decrease over time, is called an
open cohort.

We thus see that using time-on-study as the time
scale can give a different view of the survival
data (i.e., a closed cohort) than found when
using age as the time scale (i.e., an open cohort).
So which time scale should be used and how do
we make such a decision in general?

To answer this question, a key issue is to deter-
mine whether all subjects in the study first
begin to be at risk for the outcome at the time
they enter the study.

Suppose the study is a clinical trial to com-
pare, say, treatment and placebo groups, and
subjects start to be followed shortly after ran-
dom allocation into one of these two groups.

Then, it may be reasonable to assume that study
subjects begin to be at risk for the outcome
upon entry into the study. In such a situation,
using time-on-study as the time scale is typically
appropriate. Further, covariates of interest may
be controlled for by stratification and/or being
entered into a regression model (e.g., Cox PH
model) as predictors in addition to the treatment
status variable.

Suppose, instead of the above scenario, the
study is observational (i.e., not a clinical trial)
and subjects are already at risk for the outcome
prior to their study entry. Also, suppose the time
or age at which subjects first became at risk is
unknown.
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e Example: Subjects with high
blood pressure enter study, but
unknown date or age when first
diagnosed (prior to study
entry).

e Reasonable to assume that
T=t.+t

where

T = true survival time

t,. = time at risk prior to study entry

t = observed time-on-study

Left-truncated survival data

4

Time-on-study questionable

Subject t d agp a
H 2 1 65 67
I 0 (65 71
J 0 74 80
K 3 1 75 78

Subject J is 9 years older than
Subject I

I
h(t| subject J) > h(t| subject I).
But, using time-on-study approach
does not account for this difference.

One modified approach:
Use time-on-study, but control for
ag, €.2.,
h(l, X, (10) = h()(l) exp[z Bin + ya()]

4
OK provided model correctly spe-
cified but not always appropriate.

Alternatively, may consider using
age as the time scale.

For example, the subjects may all have high
blood pressure when the study begins and
are then followed until a coronary event occurs
(or censorship); such subjects already had high
blood pressure when recruited for the study, but
the date or their age when their high blood
pressure condition was first diagnosed is
assumed unknown.

In this situation, it seems reasonable that the
time at risk prior to study entry (t.), which is
unknown, contributes to the true survival time
(T) for the individual, although only the observed
time-on-study (t) is actually available to analyze.
The individual’s true (i.e., total) survival time is
therefore underestimated by the time-on-study
information (obtained from study entry), i.e., the
true survival time is left-truncated.

So, for the situation where we have left-truncated
survival data, the use of time-on-study follow-up
times that ignores unknown delayed entry time
may be questioned.

Recall that although both subjects I and J were
censored at follow-up time 6 (say, in weeks)
from study entry, subject I entered the study at
age 65, whereas subject J entered the study
at age 74. Because subject J is 9 years older
than subject I upon study entry, and recognizing
that age is a well-known risk factor for most
diseases, e.g., coronary disease, we would expect
subject J to have higher potential for failing (i.e.,
higher hazard rate) than subject I at study entry.
However, if we just use time-on-study follow-up
times in our analysis, we are not taking into
account the increased failure potential for sub-
ject J over subject I at study entry.

One way to account for the age difference at
entry would simply to control for age at entry
(i.e., ag) as a covariate in one’s survival analysis
by adding the variable ag to a Cox PH model.
This approach is reasonable provided the
model is specified correctly (e.g., proportional
hazards assumption is met for age).

Alternatively, considering subjects I and J, who
have entered at the same time but are 9 years
different in age, we might consider using age as
the time scale to represent a subject’s potential
for failure, which we now describe.
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h(a, X) = ho(a) exp[3_ BiX/]

X denotes set of covariates,
e.g., X = (Rx, BMI, SMK)
hy(a) = baseline hazard

Age-at-event Time-on-study
h(a, X) versus h(t, X, ag):
Which to use? Does it matter?

It depends!
And, it might not matter!
(often same results, if model
well-specified)

Prefer h(a, X) provided

e age is stronger determinant of
outcome than time-on-study

e hg(a) is unspecified, so that age
is not modeled as a covariate
i.e., avoids mispecifying the
model as linear in ay when ag’
also needed

Prefer h(t, X, ag) provided

e time-on-study is stronger
determinant of outcome than age

e age at entry (ag) is effectively
controlled in the model using a
linear and/ or possibly higher/
order term (or age is controlled
by stratification)
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In a Cox PH model that uses age as the time
scale (as shown on the left), the outcome vari-
able will be age-at-event (a) rather than time-
on-study (t). X denotes the set of covariates in
the model, e.g., X = (Rx, BMI, SMK). The base-
line hazard function hg(a) is an unspecified
function of a (rather than t).

At this point, we might again ask, when, if at
all, would using a model based on h(a, X) be
preferable to simply using a model of the form
h(t, X, ag) where t denotes time-on follow-up,
and a, denotes age at entry?

The answer is that “it depends”. Moreover, in
many situations, it might not matter, since use
of either model form will often lead to essen-
tially the same results, provided the model is
well-specified in each case.

On one hand, using h(a, X) may be preferable
if age is a much stronger determinant of the
outcome than time-on-study, i.e., age at event
may have a larger effect on the hazard than
time-on-study (Korn et al. 1997). Also, because
age is taken into account in an unspecified base-
line hazard hy(a), a more effective control of age
may result that avoids the possibility of mispe-
cifying the way the age at entry (ag) might be
entered into a time-on-study model, e.g., using
only a linear term when a quadratic term such as
is also required for model adequacy.

On the other hand, h(t, X, ap) may be preferable
if time-on-study is a stronger determinant of the
outcome than age at the event, as in a rando-
mized clinical trial. Also, a time-on-study model
would seem appropriate if age at entry (ag) is
“effectively controlled” (e.g., using a quadratic
term if necessary) or is stratified in the model.
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Alternative Cox PH models for
age-truncated survival data:
Let
t = follow-up time,
a = attained age at event or censor-
ship
ag = age at enrollment into study
(Note: t = a—ag)
X = (X, X5,..., Xy), vector of pre-
dictors, not including aq
B; = regression coeff. corresponding
to Xi-
vy = regression coeff. if ay included
in model

(" Model 0:

h(t.X) =hy(Dexp[ZB;Xi] ,
unadjusted for a,

Model 1:

h(t.X,a0) = ho(t)exp[ZB;X; +Y120] ,
adjusted for a as linear covariate

< Model 2:

h(t.X.ag) = ho(Dexp[EBX; +Yiag + Vraq]
adjusted for a; with quadratic covariate

Model 3:

hy(t.X) = hog(t)exp[ZB;Xi] ,

K stratified by ag or birth cohort, g= 1, ..., s

(" Model 4:

h(a,X) =ho(a)exp[ZB;Xil ,
unadjusted for left truncation at a,

Model 5:

< h(a,X) =ho(alag)exp[EBiXil ,

adjusted for left truncation at a,

Model 6:

hg(a,X) =hog(alag)exp[ZB;Xi] ,

adjusted for left truncation at ay and

\. stratified by birth cohort, g=1, ..., s

We now specify several alternative forms that
a Cox PH model might take to account for
risk-truncated survival data. As previously
introduced, our notation uses t to denote time-
on-study follow-up time, a to denote attained
age at the event or censorship, ag to denote age
at study entry, X to denote the vector of predic-
tor variables, not including age, B; to denote the
vector of Cox model coefficients corresponding
to X, and v; to denote the coefficient of aq if
model includes aq.

On the left, we provide seven different Cox PH
models that might be considered to analyze
risk-truncated survival data.

Models 0-3 use an analysis based on time-on-
study follow-up, whereas Models 4-6 consider
age as the time scale.

Of all these models, Model 0 is the least appro-
priate since this model uses time-on-study as
the outcome and does not adjust for age at
entry (ag) in any way.



Presentation: X. Using Age as the Time Scale

Models 1-3 control for ag differently

Model 1: linear effect of aq

Model 2: quadratic effect of ag

Model 3: stratifies on ag or on
birth cohorts defined
from ag (uses Stratified
Cox PH model)

Models 1-3 reasonable

if all study subjects begin risk at
study entry

if models provide effective
control of ag

Model 3
hy(t, X) = hog() exp[} B Xi]

alternative method of control
may account for advances in
medical management if
stratified on birth cohort
stratifying on either ag or on
birth cohort likely to give similar
results unless enrollment over
long time period

Models 4-6:

outcome is age-at-event
differ in baseline hazard

Model 4: h(a, X) =hg(a)exp[>_ B;Xi]

does not adjust for left-
truncation at ag

assumes risk starts at birth
data layout describes closed
cohort
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Models 1-3 are time-on-study models that
control for age at entry (ag), but do so differ-
ently. Model 1 controls for ag as a covariate and
assumes a linear effect of ag. Model 2, in con-
trast, assumes that ap has both linear and
quadratic effects. Model 3 stratifies on either
ag or on birth cohort defined from ag. Model 3
is called a Stratified Cox (SC) PH model, which
we describe in detail in Chapter 5.

Models 1-3 are all reasonable if we assume that
study subjects begin to be at risk upon study
entry, as in a randomized clinical trial. More-
over, even for an observational study design in
which subjects have different ages at entry,
these models may appear justifiable if they
provide effective control of a,.

Model 3 controls for entry age by stratifying
either on age at entry (ag) or on birth cohort
based on ay. Model 3 provides an alternative
way to control for age without explicitly putting
ag as a covariate in the model (as was done in
Models 1 and 2). If we stratify by birth cohort
instead of by ag, we can account for possible
advances in medical management in later birth
cohorts. Nevertheless, stratifying by age at entry
or stratifying by birth cohort would likely give
similar results unless enrollment happens over
a long period of time. In the latter case, we
recommend stratifying on birth cohort.

Models 4-6 use age-at-event or censorship
rather than time-on-study as the outcome vari-
able. These models differ in the way the base-
line hazard function is specified.

Model 4 uses hg(a) to indicate that, although
age is the outcome, the model does not adjust
for left truncation at the entry age (ap). In
effect, this baseline hazard assumes that each
subject’s observed risk period started at birth.
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..............

R(a) = {P, Q} using Model 4 even
though Q enrolled after P failed

Previous example:

Age as Time Scale w. Left Truncation

H 2 X
|—6 ¢ 5
J c
K—3—x
T T T T T T T T T
65 6769 71 73 75 77 79 8

R(a=67)={H, I, J, K} using Model
4 since all four subjects at risk from
birth x until H fails at age a = 67

Model 5: h(a, X) = hg(alag) exp[>_ B;Xi]
e adjusts for left-truncation at ag

e data layout describes open
cohort

X

Q—

F—+—
ap 8pq aq

I A
f ge
0 op

R(a) = {P} and R(a*) = {Q} using

Model 5 because Q enrolled after P
failed

Previous example with H, I, 7J,
K: R(a=67) = {H, I} and R(a=78) =
{J, K} using Model 5 since J and K
had not enrolled when H failed at
67 and {H, I} were not used in
study when K failed at 78.

Model 3 Model 6
Stratifies on

birth cohort? Yes Yes
Adjusts for age-
truncation? No Yes

In other words, Model 4 allows keeping in the
risk set R(ap) any subject (e.g., subject Q in
the figure at left) who was not under study at
age ap but who enrolled later (at age agg).
Here, subject Q is in the risk set R(ap) because
we assume he is at risk from birth (Age=0)
when subject P fails at ap. The data layout with
ordered failure ages is thus a closed cohort that
starts with all subjects in the risk set at birth.

If Model 4 were applied to our previous exam-
ple involving four subjects, subjects J and K
would be incorrectly included in the risk set R
(a=67) when subject H failed, even though
both these subjects were enrolled after age 67.
This model inappropriately assumes that all
subjects were at risk from birth; it does not
adjust for age-truncation.

Model 5, on the other hand, accounts for left
truncation by age at entry. The baseline hazard
ho(a | ap) is used to indicate that the data layout
with ordered failure ages is an open cohort.
For this model, the risk set R(a) at time a con-
tains only those subjects who are under study
at age a.

If Model 5 was applied to our previous example,
subjects J and K, who had not enrolled when
subject H failed at 67, would not be in the risk
set R(a=67). Also, subjects H and I, who were
no longer in the study when subject K failed at
age 78, would not be in the risk set R(a=78).

Model 6 is similar to Model 3 stratified on birth
cohort. However, Model 6 adjusts for age trunca-
tion, whereas Model 3 does not. As with Model 3,
Model 6 is intended to account for possible
advances in medical management in later
birth cohorts. Model 6 would not be necessary
if we are considering a study in which everyone
is enrolled within a short period of time.



Summary about Models 0-6:
Models 0 and 4:

Both inappropriate

Model 0 does not adjust for age

Model 4 incorrectly assumes

that all subjects are at risk from

birth

Models 1-3, 5, 6

e All adjust for age-at-entry (ag)

e Question: Do they differ in
practice?

Pencina et al. (2007):

e Compare estimated regression

coefficients for Models 1-6

e Consider Model 5 (age-
truncated age scale) most
appropriate conceptually

e Consider Models 1 and
2 (covariate adjusted for ag)
“attempts to approximate
Model 5”

e Used numerical simulations
and practical examples from
Framingham

Conclusions:

e correct adjustment for the age

at entry is crucial

Model 1 inferior (and biased)
Little practical or meaningful

difference between Models 2
through 6

Cox PH Regression Coefficients ( se) for two
CHD risk factors among men- Framingham
Heart Disease Study (Pencina et al, 2007)

Time-on- Model 4 Age-time-scale
study Ta 2 3 4 5 6
linear quad strat  unadj age-trunc strat

Diabetic versus non-diabetic (2=2439)

0.48*  0.49* 0.48*  0.23* 047" 045"
+021 +£021 021 =020 +0.21 +0.21

Education: post— HS versus HS or less (n = 2177)

-0.43* -0.40* -0.43* 0.18 -0.43* -0.38"
+0.15 x0.15 £0.15 £0.15 +£0.16 =0.15

*The coefficient is significantly different from zero at
the 0.05 level.
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In summary, of the seven models we have
presented, Models 0 and 4 are inappropriate
because Model 0 does not account for age at
all and Model 4 ignores age truncation by
incorrectly assuming that all study subjects
were observed for the outcome from birth.

The other five models (i.e., 1-3, 5, 6) all adjust
for age at study entry in some way. A logical
question at this point is whether in practice,
it makes a difference which model is used to
analyze age-truncated survival data?

The above question was actually addressed by
Pencina et al. (Statist. Med., 2007) by compar-
ing Models 1-6 above in terms of the estimated
regression coefficients they produce. These
authors consider Model 5, the age-truncated
age scale model, to be “possibly the most appro-
priate refinement” to account for age-truncation.
They also view time-on-study Models 1 and 2,
which use linear and/or quadratic terms to
adjust for entry age as a covariate as “attempts
to approximate” Model 5.

Nevertheless, by considering numerical simula-
tions as well as four practical examples from the
Framingham Heart Study, Pencina et al. con-
clude that correct adjustment for the age at
entry is crucial in reducing bias of the estimated
coefficients. The unadjusted age-scale model
(Model 1) is inferior to any of the five other
models considered, regardless of their choice of
time scale. Moreover, if correct adjustment for
age at entry is made when considering Models
2-6, their analyses suggest that there exists
little if any practical or meaningful difference
in the estimated regression coefficients
depending on the choice of time scale.

To illustrate, we show on the left results from
Pencina et al. corresponding to Models 1-6
applied to 12-year follow-up Framingham
Heart Study data. The outcome considered
here is coronary heart disease (CHD) in men.

These results focus on two risk factors measured
at baseline: diabetes mellitus status and edu-
cation status, the latter categorized into two
groups defined by post-high-school education
(yes/no). The estimated regression coefficients
(separately) relating these two risk factors to
CHD outcome are presented in the table.
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Summary of Framingham results
from Pencina et al.:

Model 4 inferior to other models
Results for Models 1-3, 5, and 6
are similar

e Directions of estimated

coefficients were as anticipated
conceptually, e.g., + diabetes

and smoking — education
e Quadratic terms (Model 2)

were significant, suggesting

that Model 1 is mispecified but
e Did not materially influence

magnitude or significance of

exposure variables (e.g.,

diabetes, smoking, education)

Data Layout for Age-as-Time Scale:

CP format for age-truncated
survival data (Model 5)

Qo

a

X4

p
1 di agr a1 Xj4 Xip

dy apx ax Xy ... Xy
3 ds aps a3 Xs X3p
n dn don an an an

Model 4 layout:
subjects or use
(w/0 ag column)

Set ag = 0 for all
“standard” layout

Subj# d a X1 Xp
1 di a Xy Xip
d, a Xy sz
3 d3 az  Xj; Xs3p
n dn ap an an

As expected, the table shows a substantial dif-
ference in the coefficient of the risk group vari-
able estimated by the unadjusted age-scale
model (Model 4) and the five other models.
Moreover, the results for Models 1-3, 5, and 6
are all quite similar.

Pencina also point out that the directions of
coefficients for these five models are in the
directions anticipated conceptually, e.g., diabe-
tes coefficients are positive, whereas education
coefficients are negative.

The quadratic baseline age term (Model 2) was
significant for both CHD risk factors. This
suggests potential misspecification in the mod-
eling of the relationship between CHD and age
introduced by Model 1, which treats entry age
as linear. However, its inclusion in the time-on-
study model did not materially influence the
magnitude or significance of the estimated
exposure variable (diabetes or education status)
coefficient.

When using age as the time scale and account-
ing for age truncation (i.e., using Model 5
above), the data layout requires the counting
process (CP) in start-stop format previously
introduced in Section VI of Chapter 1 with ag
as the start variable and a as the stop variable.
However, since we are not considering recur-
rent events data here, the CP format for age-
truncated survival data has a simpler form,
involving only one line of data for each study
subject, as shown on the left. The computer
code needed to program the analysis is
described in the Computer Appendix for
STATA, SAS, SPSS, or R packages.

Note that the CP format corresponding to
Model 4, which assumes the starting time is
birth, would modify the Model 4 layout by let-
ting ap = 0 in the ay column for all subjects.
Nevertheless, this layout would be equivalent
to the “standard” layout that omits ag column
and simply treats the a column data as time-
on-study information. Again, since Model 4
appears to be inferior to the other models, we
caution the reader not to use this format unless
the risk period was observed since birth.
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XI. Summary

1. Review: S (1), & (t), data layout,
etc.
2. Computer example of Cox model:
e ecstimate HR
e test hypothesis about HR
e obtain confidence intervals
3. Cox model formula:

»
Bi Xi
h(t, X) = ho(t)e;

4. Why popular: Cox PH model is
“robust”

5. ML estimation: maximize a
partial likelihood L = L(f) =
joint probability of observed data

6. Hazard ratio formula:

—~ p A
HR = exp [Z B:(X; — X))
i=1

7. Interval estimation-interaction:
HR=expl[/],

where ( = Bl + 81 W1 + 6, W, +...+5kW](
B, = coeff. of X;, and
dj=coeff. of X x Wj, j=1,... .k

95% CI for HR=expl[/]:
exp[/ + 1.96/Var()]

Most computer packages, e.g., SAS,
STATA, compute Var/ as part of the
program options (see Computer
Appendix).

In this section we briefly summarize the
content covered in this presentation.

e We began with a computer example that
uses the Cox PH model. We showed how
to use the output to estimate the HR, and
how to test hypotheses and obtain
confidence intervals about the hazard ratio.

e We then provided the formula for the hazard
function for the Cox PH model and described
basic features of this model. The most
important feature is that the model contains
two components, namely, a baseline hazard
function of time and an exponential function
involving X’s but not time.

e We discussed reasons why the Cox model is
popular, the primary reason being that the
model is “robust” for many different
survival analysis situations.

e We then discussed ML estimation of the
parameters in the Cox model, and pointed
out that the ML procedure maximizes a
“partial” likelihood that focuses on
probabilities at failure times only.

e Next, we gave a general formula for
estimating a hazard ratio that compared
two specifications of the X’s, defined as X*
and X. We illustrated the use of this
formula when comparing two exposure
groups adjusted for other variables.

e We then described how to obtain a 95% CI
for the HR when the hazard model contains
interaction terms of the form X; xW;, where
X is a(0,1) exposure variable and W; is an
effect modifier of exposure. The formula is
shown at the left. In this formula, the Var ¢
is difficult to calculate without the use of a
computer program.

Fortunately, most computer packages have
procedures for calculating this formula as
part of the program options, e.g., SAS’s
“contrast” option and STATA’s “lincom”
option.
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8. Adjusted survival curves: 0 or 1
Comparing E groups:

§.%) = [§o(t)] exp [Bl E+; B,-X,}

Single curve:

$(1,X) = [So(n)] P12

9. PH assumption:

h(t, X*)
h(t,X)
ie., h(t,X*) = 0h(1,X)

Hazards cross = PH not met

=0 (a constant over ?)

10. Derivation of Cox PH Likeli-
hood

11. Using “age-as-the-time scale”
instead of “time-on-follow-up”
Reason: account for left trun-
cation of age
Cox PH model that adjusts for
age truncation:

h(a,X) = ho(alao) exp[» _ B;X]
where a = age at event or
censorship

ap = age at study entry

Data Layout: CP (start-stop)
format

We then defined an adjusted survival curve
and presented formulas for adjusted curves
comparing two groups adjusted for other
variables in the model and a formula for a
single adjusted curve that adjusts for all X’s
in the model. Computer packages for these
formulae use the mean value of each X
being adjusted in the computation of the
adjusted curve.

We described the PH assumption as
meaning that the hazard ratio is constant
over time, or equivalently that the hazard
for one individual is proportional to the
hazard for any other individual, where the
proportionality constant is independent of
time. We also showed that for study
situations in which the hazards cross, the
PH assumption is not met.

We then showed how the Cox likelihood is
derived using ordered failure times.

Finally, we considered the use of “age as the
time scale” instead of “time-on-follow-up”
as the outcome variable, described why
such use is appropriate to account for left
truncation of age, provided the form of the
Cox PH model in this situation, illustrate its
use, and described the data layout required
using a “stop-start” Counting Process (CP)
format.

Chapters

1. Introduction to Survival
Analysis

2. Kaplan-Meier Survival Curves
and the Log-Rank Test

3. [The Cox Proportional Hazards
Model and Its Characteristics

4. Evaluating the Proportional
Hazards Assumption

5. The Stratified Cox Procedure

6. Extension of the Cox
Proportional Hazards Model
for Time-Dependent Variables

This presentation is now complete. We recom-
mend that the reader review the detailed out-
line that follows and then do the practice
exercises and test.

The next Chapter (4) describes how to evaluate
the PH assumption. Chapters 5 and 6 describe
methods for carrying out the analysis when the
PH assumption is not met.
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A computer example using the Cox PH model
(pages 100-108)

A.

B.

C.

D.

Printout shown for three models involving leu-
kemia remission data.

Three explanatory variables of interest: treat-
ment status, log WBC, and product term; out-
come is time until subject goes out of remission.
Discussion of how to evaluate which model is
best.

Similarity to classical regression and logistic
regression.

The formula for the Cox PH model
(pages 108-110)

A.

F.

h(t, X) = ho(t) exp [fl 8, x,}

ho (¢) is called the baseline hazard function.
X denotes a collection of p explanatory vari-
ables X, X5,..., Xj,.

The model is semiparametric because %(t) is
unspecified.

Examples of the Cox model using the leukemia
remission data.

Survival curves can be derived from the Cox PH
model.

Why the Cox PH model is popular (pages 110-112)

A.

B.

Can get an estimate of effect (the hazard ratio)
without needing to know /(t).

Can estimate ho(t), h(t, X), and survivor func-
tions, even though %(¢) is not specified.

The e part of the formula is used to ensure that
the fitted hazard is nonnegative.

The Cox model is “robust”: it usually fits the
data well no matter which parametric model is
appropriate.

ML estimation of the Cox PH model
(pages 112-114)

A.
B.

C.

D.

Likelihood function is maximized.

L is called a partial likelihood, because it uses
survival time information only on failures, and
does not use censored information explicitly.

L makes use of the risk set at each time that a
subject fails.

Inferences are made using standard large sam-
ple ML techniques, e.g., Wald or likelihood ratio
tests and large sample confidence intervals
based on asymptotic normality assumptions.
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V.

VI.

Computing the hazard ratio (pages 114-117)

A. Formula for hazard ratio comparing two indi-

viduals, and X = (X3, X5, ..., X,,):

h(t, X*)
h(t, X)

p ~
= exp| > B (4 — X))

i=1

B. Examples are given using a (0, 1) exposure vari-
able, potential confounders, and potential
effect modifiers.

C. Typical coding identifies X* as the group with
the larger hazard and X as the group with the
smaller hazard, e.g., Xj =1 for unexposed
group and X; = 0 for exposed group.

Interval estimation: interaction (pages 117-119)

A. Example- Model 3 from Remission Time Data

i.

ii.

h(t, X) = ho(t)exp[B;Rx + B.logWBC
+ B3(Rx x logWBC)]
HR = exp[pB; + BslogWBC]

B. General form of HR:
HR = exp[¢], where
€:B1 +81W1 +82W2+ ...+8ka,
X; = (0, 1) exposure variable, B; = coeff of X;,
and §; = coeff of X; x W, j=1,..., k
C. General form of 95% CI for HR = exp[/]:

exp [@i 1.96 V&I‘E)}, where

Var(@) = Var(B1 + 31W1 +...+ 5ka)

D. Computation of var complicated.

1.

ii.

iii.

iv.

Computer programs, e.g., in SAS, STATA,
can do this for the user.

Otherwise, user must carry out complicated
calculation using formula for var:

Var (f) = Var (/3’1) + ijzvar(éj)
j
+2) Wicoy (1. )
]
+23° S WiwiCov (2517 )
j k

Variances and covariances provided in
computer output

User specifies W’s values of interest.

Model 3 formula for Vdr(¢):
Var (é) — Var (31) + (log WBC)>Var ([}3)
+2(log WBC)?Cov (Bl, [g)

E. Example of 95% CI: Model 3
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Adjusted survival curves using the Cox PH
model (pages 120-123)

A. Survival curve formula can be obtained from
hazard ratio formula:

S(,X) = [So ()P PX]

where Sy(t) is the baseline survival function that
corresponds to the baseline hazard function /(¢).
B. To graph S(¢, X), must specify values for
X=X, Xa, ..., X,).
C. To obtain “adjusted” survival curves, usually
use overall mean values for the X's being
adjusted.

D. Examples of “adjusted” S(¢, X) using leukemia
remission data.

The meaning of the PH assumption

(pages 123-127)

A. Hazard ratio formula shows that hazard ratio is
independent of time:

h(t,X")

h(1,X)
B. Baseline hazard function not involved in the
HR formula.
C. Hazard ratio for two X’s are proportional:
h(,X)=0h(1,X)
D. An example when the PH assumption is not
satisfied: hazards cross

The Cox likelihood (pages 127-131)
A. Lottery Example
B. Likelihood based on order of events

Using age as the time scale (pages 131-142)
A. Definition of Left Truncation

i. Type I: subject has event before ty and not
included in study

ii. TypeIlL: tg > 0 and t> tg where tg time when
first observed t = observed survival time

B. Left Truncation versus Left Censoring

C. Time-on-study versus Age-as-time scale: Closed
cohort versus Open cohort

D. When to use Age-as-time-scale
i. It depends
a. Type of study

b. Well-defined model involving a, where
ag denotes age at entry
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E. Alternative Models
i. Time-on-study
a. outcome is t = time since first observed
b. consider control for ag, e.g.,

h(t, X, ag) = ho(t) exp [Z BiXi + Vlao} or

h(t, X, ag) = ho(t) exp [Z BiXi + y1a0 + Vza(ﬂ

ii. Age-as-time-scale
a. outcome is a = age at event or censor-
ship
b. adjusting for age truncation, e.g.,

h(a, X) = ho(a| ao) exp| > X or

hg(a, X) = hog(a | ag) exp [Z ﬁiXi}

F. Example from Pencina et al (2007)
i. age-as-time-scale model

a. need to adjust for age truncation sub-
jects

b. incorrect results if subjects assumed to

be observed from birth

ii. time-on-study model: when ag is controlled,
results similar to age-as-time-scale model.

iii. overall recommendation: correct adjust-
ment for the age at entry is crucial

XI. Summary (pages 143-144)
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In a 10-year follow-up study conducted in Evans
County, Georgia, involving persons 60 years or older,
one research question concerned evaluating the rela-
tionship of social support to mortality status. A Cox
proportional hazards model was fit to describe the
relationship of a measure of social network to time
until death. The social network index was denoted as
SNI, and took on integer values between 0 (poor social
network) to 5 (excellent social network). Variables to be
considered for control in the analysis as either potential
confounders or potential effect modifiers were AGE
(treated continuously), RACE (0,1), and SEX (0,1).

a. State an initial PH model that can be used to assess
the relationship of interest, which considers the
potential confounding and interaction effects of
the AGE, RACE, and SEX (assume no higher than
two-factor products involving SNI with AGE,
RACE, and SEX).

b. Foryour model in part 1a, give an expression for the
hazard ratio that compares a person with SNI = 4 to
a person with SNI = 2 and the same values of the
covariates being controlled.

c. Describe how you would test for interaction using
your model in part la. In particular, state the null
hypothesis, the general form of your test statistic,
with its distribution and degrees of freedom under
the null hypothesis.

d. Assuming a revised model containing no interac-
tion terms, give an expression for a 95% interval
estimate for the adjusted hazard ratio comparing a
person with SNI = 4 to a person with SNI = 2 and
the same values of the covariates in your model.

e. For the no-interaction model described in part 1d,
give an expression (i.e., formula) for the estimated
survival curve for a person with SNI = 4, adjusted
for AGE, RACE, and SEX, where the adjustment
uses the overall mean value for each of the three
covariates.

f. Using the no-interaction model described in part 1d,
if the estimated survival curves for persons with
SNI = 4 and SNI = 2 adjusted for (mean) AGE,
RACE, and SEX are plotted over time, will these
two estimated survival curves cross? Explain briefly.

g. For the (interaction) model described in Part 1la,
what is the formula for the 95% CI for the HR that
compares a person with SNI = 4 to a person with
SNI = 2 and the same values of the covariates being
controlled?
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2. For this question, we consider the survival data for 137
patients from the Veteran’s Administration Lung
Cancer Trial cited by Kalbfleisch and Prentice in their
book (The Statistical Analysis of Survival Time Data,
Wiley, 1980). The variables in this dataset are listed as

follows:
Variable# Variable name Coding
1 Treatment Standard = 1, test = 2
Four 2 Cell type 1 Large = 1, other = 0
indicator 3 Cell type 2 Adeno = 1, other = 0
variables 4 Cell type 3 Small = 1, other = 0
for cell type \5 Cell type 4 Squamous = 1, other = 0
6 Survival time (Days) integer counts
7 Performance 0 =worst, ..., 100 = best
status
8 Disease duration (Months) integer counts
9 Age (Years) integer counts
10 Prior therapy None = 0, some = 10

11

Status

0 = censored, 1 = died

For these data, a Cox PH model was fitted yielding the
following edited computer results:
Response: survival time

Variable name Coef. Std. Err. p >zl Haz. Ratio [95% Conf. interval]

1 Treatment 0.290 0.207 0.162 1.336 0.890 2.006

3 Adeno cell 0.789 0.303 0.009 2.200 1.216 3.982

4 Small cell 0.457 0.266 0.086 1.579 0.937 2.661

5 Squamous cell —0.400 0.283 0.157 0.671 0.385 1.167

7 Perf. status —0.033 0.006 0.000 0.968 0.958 0.978

8 Disease dur. 0.000 0.009 0.992  1.000 0.982 1.018

9 Age —0.009 0.009 0.358 0.991 0.974 1.010
10 Prior therapy 0.007 0.023 0.755 1.007 0.962 1.054

Log likelihood = —475.180

a. State the Cox PH model used to obtain the above
computer results.

b. Using the printout above, what is the hazard
ratio that compares persons with adeno cell
type with persons with large cell type? Explain
your answer using the general hazard ratio for-
mula for the Cox PH model.
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c. Using the printout above, what is the hazard
ratio that compares persons with adeno cell
type with persons with squamous cell type?
Explain your answer using the general hazard
ratio formula for the Cox PH model.

d. Based on the computer results, is there an effect
of treatment on survival time? Explain briefly.

e. Give an expression for the estimated survival
curve for a person who was given the test treat-
ment and who had a squamous cell type, where
the variables to be adjusted are performance
status, disease duration, age, and prior therapy.

f. Suppose a revised Cox model is used which con-
tains, in addition to the variables already
included, the product terms: treatment x perfor-
mance status; treatment x disease duration;
treatment x age; and treatment x prior therapy.
For this revised model, give an expression for the
hazard ratio for the effect of treatment, adjusted
for the other variables in the model.

3. The data for this question contain survival times of 65
multiple myeloma patients (references Krall et al., “A
Step-up Procedure for Selecting Variables Associated
with Survival Data,” Biometrics, vol. 31, pp. 49-57,
1975). A partial list of the variables in the dataset is
given below:

Variable 1: observation number

Variable 2: survival time (in months) from time of
diagnosis

Variable 3: survival status (0 = alive, 1 = dead)

Variable 4: platelets at diagnosis (0 = abnormal,
1 = normal)

Variable 5: age at diagnosis (years)

Variable 6: sex (1 = male, 2 = female)
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Below, we provide edited computer results for several
different Cox models that were fit to this dataset. A num-
ber of questions will be asked about these results.

Model 1:

Variable Coef. Std. Err.  p >|z| Haz Ratio [95% Conf. Interval]

Platelets 0.470 2.854 .869 1.600 0.006 429.689

Age 0.000 0.037 .998 1.000 0.930 1.075

Sex 0.183 0.725 .801 1.200 0.290 4.969

Platelets x age  —0.008 0.041 .850 0.992 0.915 1.075

Platelets x sex  —0.503 0.804 .532 0.605 0.125 2.924
Log likelihood = —153.040

Model 2:

Platelets —-0.725 0.401 .071 0.484 0.221 1.063

Age —0.005 0.016 740 0.995 0.965 1.026

Sex —0.221  0.311 478 0.802 0.436 1.476
Log likelihood = —153.253

Model 3:

Platelets —0.706  0.401 .078 0.493 0.225 1.083

Age —0.003 0.015 .828 0.997 0.967 1.027
Log likelihood = —153.509

Model 4:

Platelets —0.705  0.397 .076 0.494 0.227 1.075

Sex —0.204 0.307 .506 0.815 0.447 1.489
Log likelihood = —153.308

Model 5:

Platelets —0.694  0.397 .080 0.500 0.230 1.088

Log likelihood = —153.533

a. For model 1, give an expression for the hazard
ratio for the effect of the platelet variable
adjusted for age and sex.

b. Using your answer to part 3a, compute the esti-
mated hazard ratio for a 40-year-old male. Also
compute the estimated hazard ratio for a 50-
year-old female.

c. Carry out an appropriate test of hypothesis to
evaluate whether there is any significant inter-
action in model 1. What is your conclusion?

d. Considering models 2-5, evaluate whether age
and sex need to be controlled as confounders?

e. Which of the five models do you think is the best
model and why?
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f. Based on your answer to part 3e, summarize the
results that describe the effect of the platelet
variable on survival adjusted for age and sex.

g. Why might you consider using age-as-the-time-
scale instead of time-on-follow-up as the out-
come to analyze these data?

Consider a hypothetical 2-year study to investigate the
effect of a passive smoking intervention program on the
incidence of upper respiratory infection (URI) in new-
born infants. The study design involves the random
allocation of one of three intervention packages (A, B,
C) to all healthy newborn infants in Orange County,
North Carolina, during 1985. These infants are fol-
lowed for 2 years to determine whether or not URI
develops. The variables of interest for using a survival
analysis on these data are:

T = time (in weeks) until URI is detected or time until
censored
s = censorship status (= 1 if URI is detected, = 0 if
censored)
PS = passive smoking index of family during the week
of birth of the infant
DC = daycare status (= 1 if outside daycare, = 0 if only
daycare is in home)
BF = breastfeeding status (= 1 if infant is breastfed, =0
if infant is not breastfed)
T, = first dummy variable for intervention status (= 1 if
A =0ifB,=-1ifC)
T, = second dummy variable for intervention status
(=1ifB,=0if A, = —-1if C).

a. State the Cox PH model that would describe the
relationship between intervention package and sur-
vival time, controlling for PS, DC, and BF as con-
founders and effect modifiers. In defining your
model, use only two factor product terms involving
exposure (i.e., intervention) variables multiplied by
control variables in your model.

b. Assuming that the Cox PH model is appropriate,
give a formula for the hazard ratio that compares
a person in intervention group A with a person in
intervention group C, adjusting for PS, DC, and BF,
and assuming interaction effects.

c. Assuming that the PH model in part 1a is appropri-
ate, describe how you would carry out a chunk test
for interaction; i.e., state the null hypothesis,
describe the test statistic and give the distribution
of the test statistic and its degrees of freedom under
the null hypothesis.
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d. Assuming no interaction effects, how would you
test whether packages A, B, and C are equally effec-
tive, after controlling for PS, DC, and BF in a Cox
PH model without interaction terms (i.e., state the
two models being compared, the null hypothesis,
the test statistic, and the distribution of the test
statistic under the null hypothesis).

e. For the no-interaction model considered in parts 1c
and 1d, give an expression for the estimated survival
curves for the effect of intervention A adjusted for
PS, DC, and BF. Also, give similar (but different)
expressions for the adjusted survival curves for
interventions B and C.

2. The data for this question consists of a sample of 50
persons from the 1967-1980 Evans County Study.
There are two basic independent variables of interest:
AGE and chronic disease status (CHR), where CHR is
coded as 0 = none, 1 = chronic disease. A product term
of the form AGE x CHR is also considered. The depen-
dent variable is time until death, and the event is death.
The primary question of interest concerns whether
CHR, considered as the exposure variable, is related
to survival time, controlling for AGE. The edited output
of computer results for this question is given as follows:

Model 1:

Variable Coef. Std. Err.  Chi-sq p > |7

CHR 0.8595 0.3116 7.61 .0058
Log likelihood = —142.87

Model 2:

CHR 0.8051 0.3252 6.13 .0133

AGE 0.0856 0.0193 19.63 .0000
Log likelihood = —132.45

Model 3:

CHR 1.0009 2.2556 0.20 .6572

AGE 0.0874 0.0276 10.01 .0016

CHR x AGE  —0.0030 0.0345 0.01 .9301

Log likelihood = —132.35
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a. State the Cox PH model that allows for main
effects of CHR and AGE as well as the interaction
effect of CHR with AGE.

b. Carry out the test for significant interaction; i.e.,
state the null hypothesis, the test statistic, and its
distribution under the null hypothesis. What are
your conclusions about interaction?

c. Assuming no interaction, should AGE be con-
trolled? Explain your answer on the basis of con-
founding and/or precision considerations.

d. If, when considering plots of various hazard func-
tions over time, the hazard function for persons
with CHR = 1 crosses the hazard function for per-
sons with CHR = 0, what does this indicate about
the use of any of the three models provided in the
printout?

e. Using model 2, give an expression for the esti-
mated survival curve for persons with CHR = 1,
adjusted for AGE. Also, give an expression for the
estimated survival curve for persons with CHR = 0,
adjusted for AGE.

f. What is your overall conclusion about the effect of
CHR on survival time based on the computer results
provided from this study?

The data for this question contain remission times of 42

multiple leukemia patients in a clinical trial of a new

treatment. The variables in the dataset are given below:

Variable 1: survival time (in weeks)

Variable 2: status (1 = in remission, 0 = relapse)

Variable 3: sex (1 = female, 0 = male)

Variable 4: log WBC

Variable 5: Rx status (1 = placebo, 0 = treatment)
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Below, we provide computer results for several differ-
ent Cox models that were fit to this dataset. A number
of questions will be asked about these results starting

below.
Model 1:
Variable Coef. Std. Err.  p > |z] Haz Ratio [95% Conf.Interval]
Rx 0.894 1.815 .622 2.446 0.070 85.812
Sex —-1.012  0.752 178 0.363 0.083 1.585
log WBC 1.693  0.441 .000 5.437 2.292 12.897
Rx x Sex 1.952  0.907 .031 7.046 1.191 41.702
Rx x log WBC  —0.151 0.531 776 0.860 0.304 2.433
Log likelihood = —69.515
Model 2:
Rx 0.405 0.561 470 1.500 0.499 4.507
Sex —-1.070  0.725 140 0.343 0.083 1.422
log WBC 1.610  0.332 .000 5.004 2.610 9.592
Rx x Sex 2.013 0.883 .023 7.483 1.325 42.261
Log likelihood = —69.555
Model 3:
Rx 0.587 0.542 279 1.798 0.621 5.202
Sex —1.073  0.701 126 0.342 0.087 1.353
Rx x Sex 1.906 0.815 .019 6.726 1.362 33.213
Log likelihood = —83.475
Model 4:
Rx 1.391  0.457 .002 4.018 1.642 9.834
Sex 0.263  0.449 .558 1.301 0.539 3.139
log WBC 1.594  0.330 .000 4.922 2.578 9.397

Log likelihood = —72.109

a.

Use the above computer results to carry out a chunk
test to evaluate whether the two interaction terms in
model 1 are significant. What are your conclusions?

Evaluate whether you would prefer model 1 or
model 2. Explain your answer.

Using model 2, give an expression for the hazard
ratio for the effect of the Rx variable adjusted for
SEX and log WBC.

Using your answer in part 3¢, compute the hazard
ratio for the effect of Rx for males and for females
separately.

By considering the potential confounding of log
WBC, determine which of models 2 and 3 you pre-
fer. Explain.

Of the models provided which model do you con-
sider to be best? Explain.
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e. S(,X)=[So(r)
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. h(t,X) = ho(t) exp[B; SNI + B, AGE + B3 RACE

+ Ba SEX + Bs SNI x AGE + B SNI x RACE
+ By SNI x SEX]

b. HR=exp[2B; + 2(AGE)Bs + 2(RACE)Bs + 2(SEX)p-]
. Hy: Bs = B = P7 = 0. Likelihood ratio test statistic:

—2In Lg — (=2 In Lp), which is approximately X3
under Hy, where R denotes the reduced model (con-
taining no product terms) under Hy, and F denotes
the full model (given in part la above).

95% CI for adjusted HR:

exp {2[31 +1.96 x 24 /V&r(ﬁl)]

} exp [4/}1 +(AGE)B,+ (RACE)33+(S]'3_X>B4]

The two survival curves will not cross, because both
are computed using the same proportional hazards
model, which has the property that the hazard func-
tions, as well as their corresponding estimated sur-
vivor functions, will not cross.

95% CI for HR = exp[/]: exp[@ 4 1.96V/ Var /]

© where £ = 28, + 2(AGE)Bs + 2(RACE)Bs + 2(SEX)B,
. h (X)) =ho (1) exp [B1 X1 + B3X3 + PBaXs + PsX5 + B7X7

+ ... 4 BroXio]

. Adeno cell type: X* = (treatment, 1, 0, 0, perfstat,

disdur, age, prther)
Large cell type: X = (treatment, 0, 0, 0, perfstat,
disdur, age, prther)

HR = L(tt ); [Z Bi(X; —

—exp [0+ B5(1 — 0) + B4(0— 0)
+Bs(0—0)+0+...+0]
=.exp {/}3} = exp|0.789] = 2.20

. Adeno cell type: X* = (treatment, 1, 0, 0, perfstat,

disdur, age, prther)
Squamous cell type: X = (treatment, 0, 0, 1, perfstat,
disdur, age, prther)

h((l X*) — exp lz ﬂ X*

= exp [0+/33(1 - )+ﬁ4(0 - 0)
+Bs(0—1)+0+...+0]

— exp {[33 - 35} — exp[0.789
— (~0.400)] = exp [1.189] = 3.28

HR =
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d. There does not appear to be an effect of treatment
on survival time, adjusted for the other variables in
the model. The hazard ratio is 1.3, which is close to
the null value of one, the p-value of 0.162 for the
Wald test for treatment is not significant, and the
95% confidence interval for the treatment effect

correspondingly includes the null value. )
e g(l‘,X) _ [SA()(I‘)] exp[Zﬁl+[35+(perfstat)/}7+(disdur)/is+(Tge)[fq+(prther)/1w]

h(t,X7)
h(t,X)

£ R = =exp|f, + (perfstat);, + (disdur)f,,

+ (age)Bi3 + (prther)By4]

where B; is the coefficient of the treatment variable
and B11, B12, B13, and B4 are the coefficients of prod-
uct terms involving treatment with the four vari-
ables indicated.

3. a. HR = exp[0.470 + (—0.008)age + (—0.503)sex]
b. 40-year-old male:

HR = exp[0.470 + (—0.008)40 + (—0.503)1] = 0.70
50-year-old Female:

HR = exp[0.470 + (—0.008)50 + (—0.503)2] = 0.39

c. The LR (chunk) test for the significance of both
interaction terms simultaneously yields the follow-

ing likelihood ratio statistic which compares mod-
els 1 and 2:

LR =[(—2 x —153.253) — (=2 x —153.040)]
= 306.506 — 306.080 = 0.426

This statistic is approximately chi-square with
2 degrees of freedom under the null hypothesis of
no interaction. This LR statistic is highly nonsignif-
icant. Thus, we conclude that there is no significant
interaction in the model (1).

d. The gold-standard hazard ratio is 0.484, which is
obtained for model 2. Note that model 2 contains no
interaction terms and controls for both covariates
of interest. When either age or sex or both are
dropped from the model, the hazard ratio (for pla-
telets) does not change appreciably. Therefore, it
appears that neither age nor sex need to be con-
trolled for confounding.
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e. Models 2-5 are all more or less equivalent, since
they all give essentially the same hazards ratio and
confidence interval for the effect of the platelet var-
iable. A political choice for best model would be the
gold-standard model (2), because the critical
reviewer can see both age and sex being controlled
in model 2.

f. e The point estimate of the hazard ratio for normal
versus abnormal platelet count is 0.484 = 1/2.07,
so that the hazard for an abnormal count is twice
that for a normal count.

e There is a borderline significant effect of platelet
count on survival adjusted for age and sex
(P =.071).

e The 95% CI for the hazard ratio is given by 0.221
< HR < 1.063, which is quite wide and therefore
shows a very imprecise estimate.

Subjects may already at risk for the outcome prior to their
study entry (at diagnosis). If so, then the time at risk prior
to study entry contributes to the true survival time (say,
T) for the individual, although only the observed time-on-
study (t), is actually available to be analyzed. The indivi-
dual’s survival time is therefore underestimated by the
time-on-study information (obtained from study entry),
i.e., the true survival time is left-truncated. However, if
age-as-the-time-scale as the outcome is considered, then
it is possible to adjust for this left truncation by using age
at entry in a hazard model of the form

h(a, X) = hy(alag) exp {Z ﬁiXi}

where a denotes age at follow-up, ag denotes age at
study entry, and hg(alag) is a baseline hazard that
adjusts for age truncation at a,.
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Introduction

Abbreviated
Outline

We begin with a brief review of the characteristics of the
Cox proportional hazards (PH) model. We then give an
overview of three methods for checking the PH assump-
tion: graphical, goodness-of-fit (GOF), and time-dependent
variable approaches.

We then focus on each of the above approaches, starting
with graphical methods. The most popular graphical
approach involves the use of “log-log” survival curves.
A second graphical approach involves the comparison of
“observed” with “expected” survival curves.

The GOF approach uses a test statistic or equivalent
p-value to assess the significance of the PH assumption.
We illustrate this test and describe some of its advantages
and drawbacks.

Finally, we discuss the use of time-dependent variables in
an extended Cox model as a third method for checking the
PH assumption. A more detailed description of the use of
time-dependent variables is provided in Chapter 6.

The outline below gives the user a preview of the material
to be covered by the presentation. A detailed outline for
review purposes follows the presentation.

I. Background (pages 164-165)

II. Checking the proportional hazards assumption:
overview (pages 165-167)

III. Graphical approach 1: log-log plots
(pages 167-175)
IV. Graphical approach 2: observed versus expected
plots (pages 175-180)
V. The goodness-of-fit (GOF) testing approach
(pages 181-183)

VI. Assessing the PH assumption using time-
dependent covariates (pages 183-187)
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Upon completing this chapter, the learner should be able to:

1.

State or recognize three general approaches for
evaluating the PH assumption.

Summarize how log-log survival curves may be used to
assess the PH assumption.

Summarize how observed versus expected plots may be
used to assess the PH assumption.

Summarize how GOF tests may be used to assess the
PH assumption.

Summarize how time-dependent variables may be used
to assess the PH assumption.

Describe — given survival data or computer output

from a survival analysis that uses a Cox PH model —

how to assess the PH assumption for one or more

variables in the model using:

a. a graphical approach

b. the GOF approach

c. an extended Cox model with time-dependent
covariates

State the formula for an extended Cox model that

provides a method for checking the PH assumption for

one or more of the time-independent variables in the

model, given survival analysis data or computer output

that uses a Cox PH model.
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Presentation

Evaluating PH:
e graphical

o goodness-of-fit
e time-dependent
variables

This presentation describes three approaches
for evaluating the proportional hazards (PH)
assumption of the Cox model — a graphical
procedure, a goodness-of-fit testing procedure,
and a procedure that involves the use of time-
dependent variables.

I. Background

Cox PH model:

Bi Xi
h(t, X) = ho(t)e;

X = (Xj, X5,..., X,,) explanatory/
predictor variables

P
> BX;
h()(l) X ei=l

Baseline hazard | Exponential

Involves ¢ but Involves X’s but
not X’s not ¢ (X’s are time-
independent)

X’s involving ¢: time-dependent
Requires extended Cox model
(no PH)

Chapter 6

Recall from the previous chapter that the gen-
eral form of the Cox PH model gives an expres-
sion for the hazard at time ¢ for an individual
with a given specification of a set of explana-
tory variables denoted by the bold X.

The Cox model formula says that the hazard at
time ¢ is the product of two quantities. The first
of these, hy(t), is called the baseline hazard
function. The second quantity is the exponential
expression e to the linear sum of B;X;, where the
sum is over the p explanatory X variables.

An important feature of this formula, which
concerns the proportional hazards (PH)
assumption, is that the baseline hazard is a
function of ¢, but does not involve the Xs,
whereas the exponential expression involves
the X’s, but does not involve ¢. The X’s here are
called time-independent X’s.

It is possible, nevertheless, to consider X’s
that do involve t. Such X’s are called time-
dependent variables. If time-dependent vari-
ables are considered, the Cox model form may
still be used, but such a model no longer satis-
fies the PH assumption, and is called the
extended Cox model. We will discuss this
extended Cox model in Chapter 6 of this series.
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Hazard ratio formula:

AR = exp[$°7, ;)]

where X* = (XT, X3, ,X;;)
and X = (Xl; Xz,. . Xp)
denote the two sets of X’s.

Adjusted survival curves
comparing E groups:

§(6,X) = [So@]exp{

B E+Z ﬂi)_(!:|

Single curve:

S(.X) = [So(0)] { }

S

PH assumption:

h(t, X*)

= 0, constant over ¢

h(t, X)
ie., h(t,X*) = 0h(t,X)

Hazards cross: = PH not met

Hazards don’t cross 3% PH met

From the Cox PH model, we can obtain a
general formula, shown here, for estimating a
hazard ratio that compares two specifications
of the X’s, defined as X* and X.

We can also obtain from the Cox model an
expression for an adjusted survival curve.
Here we show a general formula for obtaining
adjusted survival curves comparing two groups
adjusted for other variables in the model.
Below this, we give a formula for a single
adjusted survival curve that adjusts for all X’s
in the model. Computer packages for these for-
mulae use the mean value of each X being
adjusted in the computation of the adjusted
curve.

The Cox PH model assumes that the hazard
ratio comparing any two specifications of pre-
dictors is constant over time. Equivalently, this
means that the hazard for one individual is
proportional to the hazard for any other indi-
vidual, where the proportionality constant is
independent of time.

The PH assumption is not met if the graph of
the hazards cross for two or more categories of
a predictor of interest. However, even if the
hazard functions do not cross, it is possible
that the PH assumption is not met. Thus,
rather than checking for crossing hazards, we
must use other approaches to evaluate the rea-
sonableness of the PH assumption.

Il. Checking the

Proportional Hazards
Assumption: Overview

Three approaches:

e graphical
e goodness-of-fit test

time-dependent variables

There are three general approaches for asses-
sing the PH assumption, again listed here. We
now briefly overview each approach, starting
with graphical techniques.
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Graphical techniques:
—In(-In) S curves parallel?

—In(-In) §

Females

Time

Observed vs. predicted: Close?

Time

Predicted for males
(sex in model)

——————— Observed for males

Goodness-of-fit (GOF) tests:

e Large sample Z or chi-square
statistics

e Gives p-value for evaluating PH
assumption for each variable in
the model.

p-value large = PH satisfied
(e.g. P >0.10)

p-value small = PH not satisfied
(e.g. P < 0.05)

Time-dependent covariates:

Extended Cox model:
Add product term involving some
function of time.

There are two types of graphical techniques
available. The most popular of these involves
comparing estimated -In(~In) survivor curves
over different (combinations of) categories of
variables being investigated. We will des-
cribe such curves in detail in the next section.
Parallel curves, say comparing males with
females, indicate that the PH assumption is
satisfied, as shown in this illustration for the
variable Sex.

An alternative graphical approach is to com-
pare observed with predicted survivor curves.
The observed curves are derived for categories
of the variable being assessed, say, Sex, with-
out putting this variable in a PH model. The
predicted curves are derived with this variable
included in a PH model. If observed and pre-
dicted curves are close, then the PH assump-
tion is reasonable.

A second approach for assessing the PH
assumption involves goodness-of-fit (GOF)
tests. This approach provides large sample Z
or chi-square statistics which can be computed
for each variable in the model, adjusted for the
other variables in the model. A p-value derived
from a standard normal statistic is also given
for each variable. This p-value is used for
evaluating the PH assumption for that variable.
A nonsignificant (i.e., large) p-value, say
greater than 0.10, suggests that the PH assump-
tion is reasonable, whereas a small p-value, say
less than 0.05, suggests that the variable being
tested does not satisfy this assumption.

When time-dependent variables are used to
assess the PH assumption for a time-indepen-
dent variable, the Cox model is extended to
contain product (i.e., interaction) terms
involving the time-independent variable being
assessed and some function of time.
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EXAMPLE

h(t, X) = ho(t) exp[BSex + 3(Sex x t)]
8 # 0 . PH assumption violated

GOF provides test statistic
Graphical: subjective

Time-dependent: computationally

GOF: global, may not detect specific

cumbersome

departures from PH

For example, if the PH assumption is being
assessed for Sex, a Cox model might be
extended to include the variable “Sex x ¢’ in
addition to Sex. If the coefficient of the prod-
uct term turns out to be significant, we can
conclude that the PH assumption is violated
for Sex.

The GOF approach provides a single test
statistic for each variable being assessed. This
approach is not as subjective as the graphical
approach nor as cumbersome computationally
as the time-dependent variable approach.
Nevertheless, a GOF test may be too “global”
in that it may not detect specific departures
from the PH assumption that may be observed
from the other two approaches.

Ill. Graphical Approach 1:

Log—Log Plots

log-log survival curves
observed versus expected
survival curves

log—log § = transformation of §

= —In—InS)

In S is negative = — (In S) is
positive.

can’t take log of In S, but can

take log of (—In S).

—In(—In §) may be positive or

negative.

The two graphical approaches for checking
the PH assumption are comparing log-log
survival curves and comparing observed versus
expected survival curves. We first explain what
a —In —In survival curve is and how it is used.

A log-log survival curve is simply a transforma-
tion of an estimated survival curve that results
from taking the natural log of an estimated
survival probability twice. Mathematically, we
write a log-log curve as —In(—In §). Note that
the log of a probability such as § is always a
negative number. Because we can only take
logs of positive numbers, we need to negate
the first log before taking the second log. The
value for —In(—In §) may be positive or nega-
tive, either of which is acceptable, because we
are not taking a third log.'

'!An equivalent way to write to —In(—InS) is
—In(f; h(u)du), where [, h(u)duis called the “cumulative
hazard” function. This result follows from the formula
S(f) = exp[— [y h(u)du], which relates the survivor func-
tion to the hazard function (see p. 15 in Chapter 1).
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EXAMPLE
/ —In(-In)$
SA' +oo

(@D

N
-

—o0

EXAMPLE

want —In(—In 0.54)
—In(—In 0.54) = —In(0.616)
since In(0.54) = —0.616
“1n(0.616) = 0.484
since In(0.616) = —0.484
Thus, [—ln(—ln 0.54) = 0.484 )

ANOTHER EXAMPLE

want —In(—In 0.25)
—In(—In 0.25) = —In(1.386) = —0.327
Thus, (In(-In 0.25) = —0.327)

y-axis scale:

1. T .
0 S —In(1 —1In)S

log-log § for the Cox PH model:

As an example, in the graph at left, the
estimated survival probability of 0.54 is trans-
formed to a log-log value of 0.484. Similarly,
the point 0.25 on the survival curve is trans-
formed to a —In —In value of —0.327.

Note that because the survival curve is usually
plotted as a step function, so will the log-log
curve be plotted as a step function.

To illustrate the computation of a log-log value,
suppose we start with an estimated survival
probability of 0.54. Then the log-log trans-
formation of this value is —In(—In 0.54), which
is —In(0.616), because In(0.54) equals —0.616.
Now, continuing further, —In(0.616) equals
0.484, because In(0.616) equals —0.484. Thus,
the transformation —In(—In 0.54) equals 0.484.

As another example, if the estimated survival
probability is 0.25, then —In(—In 0.25) equals
—In(1.386), which equals —0.327.

Note that the scale of the y-axis of an estimated
survival curve ranges between 0 and 1, whereas
the corresponding scale for a —In(—In) curve
ranges between —oo and +oo.

We now show why the PH assumption can be
assessed by evaluating whether or not log-log
curves are parallel. To do this, we must first
describe the log-log formula for the Cox PH
model.
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Cox PH hazard function:

iXi

h(,X) = ho(z‘)e;

From math
Cox PH survival function:

Z:ﬁ/xi
S(1,X) = [So(0)]°"
/

Baseline survival function.

log-log=> takes logs twice

log #1:
»
BiXi
In §(t,X) = e; x In S ()
0<8tX) <1

In(probability) = negative value, so
In S(z,X) and In Sy(¢) are negative.

But —In S(¢,X) is positive, which
allows us to take logs again.

log #2:
In[—In S(7,X)]
) BiXi
=In [—e=  x In Sy(r)
) BiXi
=In e; + In[—1n Sy(7)]

or
—In[—In §(z,X)]

- zp: B:X; — In[—In So(z)]
i=1
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We start with the formula for the survival curve
that corresponds to the hazard function for the
Cox PH model. Recall that there is a mathemat-
ical relationship between any hazard function
and its corresponding survival function. We
therefore can obtain the formula shown here
for the survival curve for the Cox PH model.
In this formula, the expression Sy(¢) denotes
the baseline survival function that corresponds
to the baseline hazard function 4 (7).

The log-log formula requires us to take logs of
this survival function twice. The first time we
take logs we get the expression shown here.

Now since S(¢, X) denotes a survival probabil-
ity, its value for any ¢ and any specification of
the vector X will be some number between
0 and 1. It follows that the natural log of any
number between 0 and 1 is a negative number,
so that the log of S(¢, X) as well as the log of
So(?) are both negative numbers. This is why we
have to put a minus sign in front of this expres-
sion before we can take logs a second time,
because there is no such thing as the log of a
negative number.

Thus, when taking the second log, we must
obtain the log of —In S(¢, X), as shown here.
After using some algebra, this expression can
be rewritten as the sum of two terms, one of
which is the linear sum of the B.X; and the
other is the log of the negative log of the
baseline survival function.

This second log may be either positive or
negative, and we aren’t taking any more logs,
so we actually don’'t have to take a second
negative. However, for consistency’s sake, a
common practice is to put a minus sign in
front of the second log to obtain the —In —In
expression shown here. Nevertheless, some
software packages do not use a second minus
sign.
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Two individuals:
Xl = (Xll; Xer' L) le)
XZ = (XZI; X22y' By XZp)

In[-In (1, X;)]

=" B Xy +In[—In So(r)]
i=1
]n[— In S(I,Xz)]

_ i: B; X +In[—In So(1)]
i=1

In[—In S(,X)]
— (In[-1n $(,X>)))

P
=D BilXi— Xa)
i=1

does not involve ¢

—In[—1In S(r,X1)]
=In[—1In S(1,X3)]

p
+> 0 BilXu — Xa)
i=1

tn[=ln 5] 2Bi(Xy; - Xy:)

Graphical approach using log-log
plots: PH model is appropriate if
“empirical” plots of log-log sur-
vival curves are parallel.

Now suppose we consider two different speci-
fications of the X vector, corresponding to two
different individuals, X; and X.

Then the corresponding log-log curves for
these individuals are given as shown here,
where we have simply substituted X; and X,
for X in the previous expression for the log-log
curve for any individual X.

Subtracting the second log-log curve from the
first yields the expression shown here. This
expression is a linear sum of the differences in
corresponding predictor values for the two
individuals. Note that the baseline survival
function has dropped out, so that the differ-
ence in log-log curves involves an expression
that does not involve time ¢.

Alternatively, using algebra, we can write the
above equation by expressing the log-log sur-
vival curve for individual X; as the log-log
curve for individual X, plus a linear sum term
that is independent of ¢.

The above formula says that if we use a Cox PH
model and we plot the estimated log-log sur-
vival curves for individuals on the same graph,
the two plots would be approximately parallel.
The distance between the two curves is the
linear expression involving the differences in
predictor values, which does not involve time.
Note, in general, if the vertical distance
between two curves is constant, then the curves
are parallel.

The parallelism of log-log survival plots for the
Cox PH model provides us with a graphical
approach for assessing the PH assumption.
That is, if a PH model is appropriate for a given
set of predictors, one should expect that empiri-
cal plots of log-log survival curves for different
individuals will be approximately parallel.
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Empirical plots: use —In[—In §]
where

1. Sis a KM curve

2. Sis an adjusted survival curve
for predictors satisfying the PH
assumption; predictor being
assessed not included in model

EXAMPLE

Clinical trial of leukemia patients:
T = weeks until patient goes out of
remission

Predictors (X’s):
Rx (= 1 if placebo, 0 if treatment)
log WBC

Cox PH model:

h(t, X) = ho(t)exp[Bi1Rx + B, log WBC]
Assessing PH assumption: compare
log-log survival curves for categories
of Rx and log WBC

One-at-a-time strategy: Rx variable

In(=In)S

One-at-a-time strategy: log WBC

ln(—ln)§
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By empirical plots, we mean plotting log-log
survival curves based on Kaplan-Meier (KM)
estimates that do not assume an underlying
Cox model. Alternatively, one could plot
log-log survival curves which have been
adjusted for predictors already assumed to sat-
isfy the PH assumption but have not included
the predictor being assessed in a PH model.

As an example, suppose we consider the com-
parison of treatment and placebo groups in a
clinical trial of leukemia patients, where sur-
vival time is time, in weeks, until a patient
goes out of remission. Two predictors of
interest in this study are treatment group
status (1 = placebo, 0 = treatment), denoted as
Rx, and log white blood cell count (log WBC),
where the latter variable is being considered as
a confounder.

A Cox PH model involving both these predic-
tors would have the form shown at the left. To
assess whether the PH assumption is satisfied
for either or both of these variables, we would
need to compare log-log survival curves involv-
ing categories of these variables.

One strategy to take here is to consider the
variables one at a time. For the Rx variable,
this amounts to plotting log-log KM curves
for treatment and placebo groups and asses-
sing parallelism. If the two curves are approxi-
mately parallel, as shown here, we would
conclude that the PH assumption is satisfied
for the variable Rx. If the two curves intersect
or are not parallel in some other way, we would
conclude that the PH assumption is not satis-
fied for this variable.

For the log WBC variable, we need to categorize
this variable into categories — say, low, medium,
and high - and then compare plots of log-log
KM curves for each of the three categories. In
this illustration, the three log-log Kaplan-Meier
curves are clearly nonparallel, indicating that
the PH assumption is not met for log WBC.
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EXAMPLE: Computer Results

3E
E Remission data:
2F log-log KM curves by Rx
L §_ Treatment
of
1 ;-
) ;‘ ““““““
_3 E - Tk 1 1 1
8 16 24 32
4

Remission data: log-log
KM curves by log WBC

Medium

Remission data: log-log
KM curves by Sex

PH not satisfied
for Sex

Problems with log-log survival
curve approach:

How parallel is parallel?
Recommend:

subjective decision
conservative strategy: assume
PH is OK unless strong
evidence of nonparallelism

The above examples are sketches of some of the
possibilities that could occur from compari-
sons of log-log curves. For the actual data set
containing 42 leukemia patients, computer
results are shown here for each variable sepa-
rately. Similar output using Stata, SAS, SPSS,
and R packages is provided in the Computer
Appendix.

We first show the log-log KM curves by treat-
ment, Rx. Notice that the two log-log curves
are roughly parallel, indicating that the Rx var-
iable satisfies the PH assumption when being
considered by itself.

Here we show the log-log KM curves by log
WBC, where we have divided this variable into
low (below 2.3), medium (between 2.3 and 3),
and high (above 3) values. Notice that there is
some indication of nonparallelism below 8 days,
but that overall the three curves are roughly
parallel. Thus, these plots suggest that the PH
assumption is more or less satisfied for the
variable log WBC, when considered alone.

As a third example, we consider the log-log KM
plots categorized by Sex from the remission
data. Notice that the two curves clearly inter-
sect, and are therefore noticeably nonparallel.
Thus, the variable, Sex, when considered by
itself, does not appear to satisfy the PH assump-
tion and therefore should not be incorporated
directly into a Cox PH model containing the
other two variables, Rx and log WBC.

The above examples suggest that there are
some problems associated with this graphical
approach for assessing the PH assumption. The
main problem concerns how to decide “how
parallel is parallel?” This decision can be quite
subjective for a given data set, particularly if the
study size is relatively small. We recommend
that one should use a conservative strategy for
this decision by assuming the PH assumption
is satisfied unless there is strong evidence of
nonparallelism of the log-log curves.
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How parallel is parallel?

Recommend:

many categories = data “thins
out”

different categorizations may
give different graphical
pictures

Recommend:

small # of categories (2 or 3)
meaningful choice
reasonable balance (e.g.,
terciles)

How to evaluate several variables

simultaneously?

Strategy:

categorize variables separately
form combinations of
categories

compare log-log curves on
same graph

Drawback:

data “thins out”
difficult to identify variables
responsible for nonparallelism

EXAMPLE

Remission Data:

log WBC
Rx Low Medium High
Treatment v v v
Placebo v v v
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Another problem concerns how to categorize a
continuous variable like log WBC. If many cate-
gories are chosen, the data “thins out” in each
category, making it difficult to compare different
curves. [Also, one categorization into, say, three
groups may give a different graphical picture
from a different categorization into three groups. ]

In categorizing continuous variables, we recom-
mend that the number of categories be kept
reasonably small (e.g., two or three) if possible,
and that the choice of categories be as meaning-
ful as possible and also provide reasonable bal-
ance of numbers (e.g., as when using terciles).

In addition to the two problems just described,
another problem with using log-log survival
plots concerns how to evaluate the PH assump-
tion for several variables simultaneously.

One strategy for simultaneous comparisons is
to categorize all variables separately, form
combinations of categories, and then compare
log-log curves for all combinations on the
same graph.

A drawback of this strategy is that the data will
again tend to “thin out” as the number of com-
binations gets even moderately large. Also,
even if there are sufficient numbers for each
combined category, it is often difficult to deter-
mine which variables are responsible for any
nonparallelism that might be found.

As an example of this strategy, suppose we use
the remission data again and consider both Rx
and log WBC together. Because we previously
had two categories of Rx and three categories
of log WBC, we get a total of six combined
categories, consisting of treated subjects with
low log WBC, placebo subjects with low log
WBC, treated subjects with medium log WBC,
and so on.
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EXAMPLE: (continued)

Log-log KM curves by six combinations
of Rx by log WBC

Plots suggest PH not satisfied. However,
the study is small, i.e., plots are
unreliable.

Alternative strategy:
Adjust for predictors already satis-

fying PH assumption, i.e., use
adjusted log-log S curves

EXAMPLE

Remission data:

e compare Rx categories adjusted
for log WBC

e fit PH model for each Rx stratum

e obtain adjusted survival curves
using overall mean of log WBC

Log-log S curves for Rx groups using
PH model adjusted for log WBC

Treatment

-0F Placebo
) O T U B T
0 8 16 24 32

Evaluating the Proportional Hazards Assumption

The computer results are shown here for the
log-log curves corresponding to each of the six
combinations of Rx with log WBC. Notice that
there are several points of intersection among
the six curves. Therefore, these results suggest
that the PH assumption is not satisfied when
considering Rx and log WBC together.

However, the sample sizes used to estimate
these curves are quite small, ranging between
four subjects for group 4 (Rx = 1, log WBC =
low) to 12 subjects for group 6 (Rx = 1, log
WBC = high), with the total study size being
42. Thus, for this small study, the use of six
log-log curves provides unreliable information
for assessing the PH assumption.

An alternative graphical strategy for consider-
ing several predictors together is to assess the
PH assumption for one predictor adjusted for
other predictors that are assumed to satisfy the
PH assumption. Rather than using Kaplan-
Meier curves, this involves a comparison of
adjusted log-log survival curves.

As an example, again we consider the remis-
sion data and the predictors Rx and log WBC.
To assess the PH assumption for Rx adjusted
for log WBC, we would compare adjusted
log-log survival curves for the two treatment
categories, where each adjusted curve is
derived from a PH model containing log WBC
as a predictor. In computing the adjusted sur-
vival curve, we need to stratify the data by
treatment, fit a PH model in each stratum,
and then obtain adjusted survival probabilities
using the overall mean log WBC in the esti-
mated survival curve formula for each stratum.

For the remission data example, the estimated
log-log survival curves for the two treatment
groups adjusted for log WBC are shown here.
Notice that these two curves are roughly paral-
lel, indicating that the PH assumption is satis-
fied for treatment.
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EXAMPLE: (continued)

Log-log S curves for log WBC groups

using PH model adjusted for Rx

(Rx=0.5)

Low
Medium

Remission data:

Assess PH assumption for Sex:

e use PH model containing Rx and
log WBC

e use Rx and log WBC in survival
probability formula

o 8 16 24 32

Log-log S curves for Sex adjusted for

Rx and log WBC

— N W R L N
T T T T T T

v 1. log-log survival curves
2. observed versus expected
survival curves

As another example, we consider adjusted
log-log survival curves for three categories of
log WBC, adjusted for the treatment status (Rx)
variable. The adjusted survival probabilities in
this case use the overall mean Rx score, i.e., 0.5,
the proportion of the 42 total subjects that are
in the placebo group (i.e., half the subjects have
a score of Rx = 1).

The three log-log curves adjusted for treatment
status are shown here. Although two of these
curves intersect early in follow-up, they do not
suggest a strong departure from parallelism
overall, suggesting that the PH assumption is
reasonable for log WBC, after adjusting for
treatment status.

As a third example, again using the remission
data, we assess the PH assumption for Sex,
adjusting for both treatment status and log
WBC in the model. This involves obtaining
log-log survival curves for males and females
separately, using a PH model that contains
both treatment status and log WBC. The adjust-
ment uses the overall mean treatment score and
the overall mean log WBC score in the formula
for the estimated survival probability.

The estimated log-log survival curves for Sex,
adjusted for treatment and log WBC are shown
here. These curves clearly cross, indicating that
the PH assumption is not satisfied for Sex, after
adjusting for treatment and log WBC.

We have thus described and illustrated one of
the two graphical approaches for checking the
PH assumption, that is, using log-log survival
plots. In the next section, we describe an alter-
native approach that compares “observed”
with “expected” survival curves.

IV. Graphical Approach
Observed Versus
Expected Plots

Graphical analog of GOF test

2:

The use of observed versus expected plots
to assess the PH assumption is the graphical
analog of the goodness-of-fit (GOF) testing
approach to be described later, and is therefore
a reasonable alternative to the log-log survival
curve approach.
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Two strategies:

1. One-at-a-time: uses KM curves
to obtain observed plots

2. Adjusting for other variables:
uses stratified Cox PH model to
obtain observed plots (see
Chapter 5)

One-at-a-time:

e stratify data by categories of
predictor

e obtain KM curves for each
category

EXAMPLE: Remission Data

KM (Observed) Plots by Rx Group

Treatment

= @
(SRS

0 8 16 24 32
Weeks

Expected Survival Plots by Rx Group
Using PH Model

Weeks

As with the log-log approach, the observed ver-
sus expected approach may be carried out
using either or both of two strategies—(1)
assessing the PH assumption for variables
one-at-a-time, or (2) assessing the PH assump-
tion after adjusting for other variables. The
strategy which adjusts for other variables uses
a stratified Cox PH model to form observed
plots, where the PH model contains the vari-
ables to be adjusted and the stratified variable
is the predictor being assessed. The stratified
Cox procedure is described in Chapter 5.

Here, we describe only the one-at-a-time strat-
egy, which involves using KM curves to obtain
observed plots.

Using the one-at-a-time strategy, we first must
stratify our data by categories of the predictor
to be assessed. We then obtain observed plots
by deriving the KM curves separately for each
category.

As an example, for the remission data on 42
leukemia patients we have illustrated earlier,
the KM plots for the treatment and placebo
groups, with 21 subjects in each group, are
shown here. These are the “observed” plots.

To obtain “expected” plots, we fit a Cox PH
model containing the predictor being assessed.
We obtain expected plots by separately substi-
tuting the value for each category of the predic-
tor into the formula for the estimated survival
curve, thereby obtaining a separate estimated
survival curve for each category.

As an example, again using the remission data,
we fit the Cox PH model with Rx as its only
variable. Using the corresponding survival
curve formula for this Cox model, as given in
the box at the left, we then obtain separate
expected plots by substituting the values of
0 (for treatment group) and 1 (for placebo
group). The expected plots are shown here.
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EXAMPLE: (continued)

Observed Versus Expected Plots by Rx
s
1

Expected
Observed

0.8
0.6
Treatment

04F

02F

If observed and expected plots are:

e close, complies with PH
assumption

e discrepant, PH assumption
violated

Example: Remission Data (continued)

Observed and expected plots are close
for each treatment group.
Conclude PH assumption not violated.

Drawback: How close is close?

Recommend: PH not satisfied only
when plots are strongly discrepant.

To compare observed with expected plots we
then put both sets of plots on the same graph as
shown here.

If for each category of the predictor being
assessed, the observed and expected plots are
“close” to one another, we then can conclude
that the PH assumption is satisfied. If, how-
ever, one or more categories show quite dis-
crepant observed and expected plots, we
conclude that the PH assumption is violated.

For the example shown above, observed and
expected curves appear to be quite close for
each treatment group. Thus, we would conclude
using this graphical approach that the treat-
ment variable satisfies the PH assumption.

An obvious drawback to this graphical
approach is deciding “how close is close”
when comparing observed versus expected
curves for a given category. This is analogous
to deciding “how parallel is parallel]” when
comparing log-log survival curves. Here, we
recommend that the PH assumption be consid-
ered as not satisfied only when observed and
expected plots are strongly discrepant.
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Observed Versus Expected Plots by Sex

3

1 Expected
08 Observed
0.6
0.4

Males

0.2

Females

0 8 16 24 32

PH assumption not satisfied for Sex.
Same conclusion as with log-log curves.

Continuous variable:

form strata from categories
observed plots are KM curves
for each category

e two options for expected plots
1. Use PH model with k — 1
dummy variables X, for k
categories, i.e.,

k—1
h(t,X) =ho(t) exp (Z BiXei)
=1

Obtain adjusted survival
curve:

§(.X.) = [So()] ")

where

Xc = Xcl; Xch EED) Xc,k—l)
gives values of dummy
variables for category c.

Evaluating the Proportional Hazards Assumption

Example: Remission Data

As another example, again using the remission
data, we consider observed versus expected
plots by Sex, as shown here. Note that the
observed plots for males and females, which
are described by the thicker lines, cross at
about 12 weeks, whereas the expected plots
don’t actually intersect, with the female plot
lying below the male plot throughout follow-
up. Moreover, for males and females sepa-
rately, the observed and expected plots are
quite different from one another.

Thus, the above plots suggest that the PH
assumption is not satisfied for the variable
Sex. We came to the same conclusion when
using log-log survival curves, which crossed
one another and were therefore clearly non-
parallel.

When using observed versus expected plots to
assess the PH assumption for a continuous
variable, observed plots are derived, as for cat-
egorical variables, by forming strata from cate-
gories of the continuous variable and then
obtaining KM curves for each category.

However, for continuous predictors, there are
two options available for computing expected
plots. One option is to use a Cox PH model
which contains k — 1 dummy variables to indi-
cate k categories. The expected plot for a given
category is then obtained as an adjusted sur-
vival curve by substituting the values for the
dummy variables that define the given category
into the formula for the estimated survival
curve, as shown here for category c.
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Options for a continuous variable:

2. Use PH model:
h(t, X) = ho(?) exp(B X)
soX =X N
Continuous
Obtain adjusted survival curve:

S(6,%.) = [So(r)] =)

where X, denotes the mean value
for the variable X within category c.

Example: Remission Data

Observed (KM) Plots by log WBC
Categories

S
1

0.8E
0.6F
0.4F
0.2F
R S T TR TN
Option 1:

h(t, X) = ho(t) exp(B1X; + B2X5)

1 if high _J 1 if medium
0 ifother 2~ | 0 ifother

where X; = {

so that

high = (1, 0); medium = (0, 1); low = (0, 0)
Expected survival plots:

Xi=1,X2=0: $(t, Xnigh) = [§0(z)]e"p(ﬁ 1)

X1=0,X,=1: §(t, Xomedium) = [go(t)] exp(B,)

X,=0,X,=0: §(l‘, Xlow) = [S‘()(t)]
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The second option is to use a Cox PH model
containing the continuous predictor (say, X)
being assessed. Expected plots are then
obtained as adjusted survival curves by spe-
cifying predictor values that distinguish cate-
gories, as, for example, when using mean
predictor values for each category.

As an example to illustrate both options, we
consider the continuous variable log WBC
from the remission data example. To assess
the PH assumption for this variable, we would
first stratify log WBC into, say, three categories
— low, medium, and high. The observed plots
would then be obtained as KM curves for each
of the three strata, as shown here.

Using option 1, expected plots would be
obtained by fitting a Cox PH model containing
two dummy variables X; and X,, as shown
here, where X, takes the values 1 if high or
0 if other and X5 takes the values 1 if medium
or 0 if other. Thus, when log WBC is high, the
values of X; and X, are 1 and 0, respectively;
whereas when log WBC is medium, the values
are 0 and 1, respectively; and when log WBC is
low, the values are both 0.

The expected survival plots for high, medium,
and low categories are then obtained by sub-
stituting each of the three specifications of
X; and X, into the formula for the estimated
survival curve, and then plotting the three
curves.
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EXAMPLE: (continued)

The expected plots using option 1 (the dummy
variable approach) are shown here for the
three categories of log WBC.

Here we put the observed and expected plots on
the same graph. Although there are some dis-
crepancies, particularly early in follow-up for
the low log WBC category, these plots suggest
overall that the PH assumption is satisfied for
log WBC.

Using option 2, expected plots would be
obtained by first fitting a Cox PH model con-
taining the continuous variable log WBC, as
shown here.

Adjusted survival curves are then obtained for
specified values of log WBC that summarize
the three categories used to form observed
curves. Here, we find that the mean log WBC
scores for low, medium, and high categories
are, respectively, 1.71, 2.64, and 3.83. These
values are substituted into the estimated sur-
vival curve formula as shown here.

Here are the observed and expected plots using
option 2. As with option 1, although there are
some discrepancies within categories, overall,
these plots suggest that the PH assumption is
satisfied for the log WBC variable.
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V. The Goodness of Fit
(GOF) Testing Approach

Statistical test appealing

e Provides p-value
e More objective decision than
when using graphical approach

Test of Harrel and Lee (1986)

e Variation of test of Schoenfeld
e Uses Schoenfeld residuals

Schoenfeld residuals defined for

e Each predictor in model
e Every subject who has event

Consider Cox PH model
h(t,X) = ho(t)exp(B;RX
+ B,log WBC + B;SEX)
3 predictors — 3 Schoenfeld
residuals for each
subject who has
event

Schoenfeld residual for ith subject
for LOGWBC:

Observed LOGWBC

- LOGWBC weighted average

Weights are other subjects’ hazard
(from subjects still at risk)

Underlying idea of test
If PH holds then Schoenfeld resi-
duals uncorrelated with time

The GOF testing approach is appealing because
it provides a test statistic and p-value for
assessing the PH assumption for a given predic-
tor of interest. Thus, the researcher can make
a more objective decision using a statistical test
than is typically possible when using either of
the two graphical approaches described above.

A number of different tests for assessing the PH
assumption have been proposed in the litera-
ture. We present the test of Harrel and Lee
(1986), a variation of a test originally proposed
by Schoenfeld (1982) and based on the residuals
defined by Schoenfeld, now called the Schoen-
feld residuals.

For each predictor in the model, Schoenfeld
residuals are defined for every subject who
has an event. For example, consider a Cox PH
model with three predictors: RX, LOGWBC,
and SEX. Then there are three Schoenfeld resi-
duals defined for each subject who has an
event, one for each of the three predictors.

Suppose subject i has an event at time t. Then
her Schoenfeld residual for LOGWBC is her
observed value of log white blood cell count
minus a weighted average of the log white
blood cell counts for the other subjects still at
risk at time t. The weights are each subject’s
hazard.

The idea behind the statistical test is that if the
PH assumption holds for a particular covar-
iate then the Schoenfeld residuals for that
covariate will not be related to survival time.
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Steps for test implementation

1. Obtain Schoenfeld residuals
Rank failure times

3. Test correlation of residuals to
ranked failure time Ho: p = 0

Hy rejected
Conclude PH assumption violated

PH test in Stata, SAS, SPSS, R
shown in Computer Appendix

Stata wuses scaled Schoenfeld
residuals rather than Schoenfeld
residuals (typically similar results)

EXAMPLE: Remission Data

Column name. Coeff. StErr. P(PH)

Rx 1.294 0.422 0.917
log WBC 1.604 0.329 0.944
Both variables satisfy PH assumption.

Note: P(PH) = 0.917 assesses PH for
Rx, assuming PH OK for log WBC.

The implementation of the test can be thought
of as a three-step process.

Step 1. Run a Cox PH model and obtain
Schoenfeld residuals for each predictor.

Step 2. Create a variable that ranks the order of
failures. The subject who has the first (earliest)
event gets a value of 1, the next gets a value of 2,
and so on.

Step 3. Test the correlation between the
variables created in the first and second steps.
The null hypothesis is that the correlation
between the Schoenfeld residuals and ranked
failure time is zero.

Rejection of the null hypothesis leads to a con-
clusion that the PH assumption is violated.

The implementation of the test for the PH
assumption in Stata, SAS, SPSS, and R is
shown in the Computer Appendix. Stata uses
a slight variation of the test we just described in
that it uses the scaled Schoenfeld residual
rather than the Schoenfeld residual (Grambsch
and Therneau, 1994). The tests typically (but
not always) yield similar results.

To illustrate the statistical test approach, we
return to the remission data example. The
printout on the left gives p-values P(PH) for
treatment group and log WBC variables based
on fitting a Cox PH model containing these two
variables.

The P(PH) values are quite high for both vari-
ables, suggesting that both variables satisfy
the PH assumption. Note that each of these
p-values tests the assumption for one variable
given that the other predictors are included in
the model. For example, the P(PH) of 0.917
assesses the PH assumption for Rx, assuming
the PH assumption is satisfied for log WBC.
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EXAMPLE

Column name Coeff. StErr. P(PH)
Rx 1.391 0.457 0.935
log WBC 1.594 0.330 0.828
Sex 0.263 0.449 0.038

log WBC and Rx satisfy PH.
Sex does not satisfy PH.

(Same conclusions using graphical
approaches).

Statistical Tests
Null is never proven

e May say not enough evidence to
reject

p-value can be driven by sample size

e Small sample — gross violation
of null may not be significant

e Large sample - slight violation
of null may be highly significant

Test — more objective

Graph - more subjective, but can
detect specific violations

Recommend - Use both graphs and

tests
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As another example, consider the computer
results shown here for a Cox PH model con-
taining the variable SEX in addition to log
WBC and treatment group. The P(PH) values
for log WBC and treatment group are still non-
significant. However, the P(PH) value for SEX
is significant below the 0.05 level. This result
suggests that log WBC and treatment group
satisfy the PH assumption, whereas SEX does
not. We came to the same conclusion about
these variables using the graphical procedures
described earlier.

An important point concerning a testing
approach is that the null hypothesis is never
proven with a statistical test. The most that
may be said is that there is not enough evidence
to reject the null. A p-value can be driven
by sample size. A gross violation of the null
assumption may not be statistically significant
if the sample is very small. Conversely, a slight
violation of the null assumption may be highly
significant if the sample is very large.

A statistical test offers a more objective
approach for assessing the PH assumption
compared to the subjectivity of the graphical
approach. However, the graphical approach
enables the researcher to detect specific kinds
of departures from the PH assumption; the
researcher can see what is going on from the
graph. Consequently, we recommend that
when assessing the PH assumption, the inves-
tigator use both graphical procedures and sta-
tistical testing before making a final decision.

VI. Assessing the PH
Assumption Using
Time-Dependent
Covariates

Extended Cox model:

contains product terms of the form
X x g(t), where g(¢) is a function of
time.

When time-dependent variables are used to
assess the PH assumption for a time-
independent variable, the Cox model is extended
to contain product (i.e., interaction) terms
involving the time-independent variable being
assessed and some function of time.
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One-at-a-time model:
h(t,X) = ho(t)exp[p X + d(Xxg(t))]

Some choices for g(¢):

g(r) =1
g(r) =log ¢

1 ifr>1¢, (heaviside
8(r) = { , -

0 ifr<t#  function)
H(): 0=0

Under Hy, the model reduces to:

h(t,X) = ho(t)exp[p X]

Use either Wald statistic or
likelihood ratio statistic:
»* with 1 df under H,

h(t,X) = ho(t)exp[Bi1Sex + B (Sex x t)]

B2 # 0 = PH assumption violated

Strategies for assessing PH:

e one-at-a-time
several predictors
simultaneously

e for a given predictor adjusted
for other predictors

Evaluating the Proportional Hazards Assumption

When assessing predictors one-at-a-time, the
extended Cox model takes the general form
shown here for the predictor X.

One choice for the function g(¢) is simply g(¢)
equal to ¢, so that the product term takes the
form X x t. Other choices for g(¢) are also pos-
sible, for example, log ¢, or the “heaviside func-
tion” shown at the left.

Using the above one-at-a-time model, we assess
the PH assumption by testing for the signifi-
cance of the product term. The null hypothesis
is therefore “4 equal to zero.” Note that if the
null hypothesis is true, the model reduces to a
Cox PH model containing the single variable X.

The test can be carried out using either a Wald
statistic or a likelihood ratio statistic. In either
case, the test statistic has a chi-square distribu-
tion with one degree of freedom under the null
hypothesis.

For example, if the PH assumption is being
assessed for Sex, a Cox model might be
extended to include the variable Sex x ¢ in addi-
tion to Sex. If the coefficient of the product term
turns out to be significant, we can conclude that
the PH assumption is violated for Sex.”

In addition to a one-at-a-time strategy, the
extended Cox model can also be used to assess
the PH assumption for several predictors
simultaneously as well as for a given predictor
adjusted for other predictors in the model.

2 In contrast, if the test for Hy: B> = 0 is nonsignificant,
we can conclude only that the particular version of the
extended Cox model being considered is not supported
by the data.
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Several predictors simultaneously:

P

h(t,X) = ho (1) exp (Z B

i=1

+6:(X; % gi(f))]>

gi(t) = function of time for ith
predictor

H0161:62=...= pZO
LR=-2In LpH model

- (_2 In Lext. cox rnodel)

~ Xf, under H

Cox PH (reduced) model:

h(t,X) = ho(r) exp (i B,»X,)
i=1

EXAMPLE: Remission Data

h(t,X) = ho(1) exp[ By (Rx)
I ﬁz (10g WBC) aF ﬁ3 (SCX)
+ 61(Rx x g(1))
+ d2(log WBC x g(1))
+ 3(Sex x g(1))]
1 ift>7
where g(r) = {0 ift<7
HOI81=62=53=0
LR~y with 3 df under H,
If test is significant, use backward

elimination to find predictors not
satisfying PH assumption.

To assess the PH assumption for several
predictors simultaneously, the form of the
extended model is shown here. This model
contains the predictors being assessed as
main effect terms and also as product terms
with some function of time. Note that different
predictors may require different functions of
time; hence, the notation g; (¢) is used to define
the time function for the ith predictor.

With the above model, we test for the PH
assumption simultaneously by assessing the
null hypothesis that all the §; coefficients are
equal to zero. This requires a likelihood ratio
chi-square statistic with p degrees of freedom,
where p denotes the number of predictors
being assessed. The LR statistic computes the
difference between the log likelihood statistic
(i.e., =2 In L) for the PH model and the log
likelihood statistic for the extended Cox
model. Note that under the null hypothesis,
the model reduces to the Cox PH model
shown here.

As an example, we assess the PH assumption
for the predictors Rx, log WBC, and Sex from
the remission data considered previously. The
extended Cox model is given as shown here,
where the functions g; (1) have been chosen to
be the same “heaviside” function defined by g(t)
equals 1 if ¢ is 7 weeks or more and g(¢) equals
0if ¢ is less than 7 weeks. The null hypothesis is
that all three & coefficients are equals to zero.
The test statistic is a likelihood-ratio chi-square
with 3 degrees of freedom.

If the above test is found to be significant, then
we can conclude that the PH assumption is not
satisfied for at least one of the predictors in the
model. To determine which predictor(s) do not
satisfy the PH assumption, we could proceed
by backward elimination of nonsignificant
product terms until a final model is attained.
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Heaviside function:

s =15

h(t,X) differs fort > 7 and t < 7.

ift>7
ift<7

Properties of heaviside functions
and numerical results are described
in Chapter 6.

Assessing PH for a given predictor
adjusted for other predictors:

p—1

h(t,X) = ho(t) exp BXi+ pX*
=1

14

+ 0" (X* x g(1))

X* = Predictor of interest
Hoi o* =
Wald or LR statistic ~y* with 1 df

Example: Remission Data

for Sex, adjusted for Rx and log WBC:
h(1,X) = exp[fRx

+ Blog WBC + *Sex

+ 0% (Sex x g(t))]

Two models for LR test of PH:

1. Cox PH model
2. extended Cox model

See Computer Appendix for SAS,
Stata, SPSS, and R

Drawback: choice of g;(t)
Different choices may lead to

different conclusions about PH
assumption.

Evaluating the Proportional Hazards Assumption

Note that the use of a heaviside function for g(¢)
in the above example yields different expres-
sions for the hazard function depending on
whether ¢ is greater than or equal to 7 weeks
or t is less than 7 weeks. Chapter 6 provides
further details on the properties of heaviside
functions, and also provides numerical results
from fitting extended Cox models.

We show here an extended Cox model that
can be used to evaluate the PH assumption
for a given predictor adjusted for predictors
already satisfying the PH assumption. The
predictor of interest is denoted as X*, and the
predictors considered to satisfy the PH
assumption are denoted as X;. The null hypoth-
esis is that the coefficient 6* of the product
term X*g(t) is equal to zero. The test statistic
can either be a Wald statistic or a likelihood
ratio statistic, with either statistic having a chi-
square distribution with 1 degree of freedom
under the null hypothesis.

As an example, suppose, again considering the
remission data, we assess the PH assumption
for the variable, Sex, adjusted for the variables
Rx and log WBC, which we assume already
satisfy the PH assumption. Then, the extended
Cox model for this situation is shown here.

To carry out the computations for any of the
likelihood ratio tests described above, two
different types of models, a PH model and an
extended Cox model, need to be fit. See the
Computer Appendix for details on how the
extended Cox model is fit using SAS, Stata,
SPSS, and R.

The primary drawback of the use of an extended
Cox model for assessing the PH assumption
concerns the choice of the functions g;(t) for
the time-dependent product terms in the model.
This choice is typically not clear-cut, and it is
possible that different choices, such as g(¢) equal
to t versus log ¢ versus a heaviside function, may
result in different conclusions about whether
the PH assumption is satisfied.



Chapter 6: Time-dependent
covariates

This presentation:
Three methods for assessing PH.

i. graphical
ii. GOF
iii. time-dependent covariates

Recommend using at least two
methods.

Presentation: Chapters 187

Further discussion of the use of time-dependent
covariates in an extended Cox model is provided
in Chapter 6.

This presentation is now complete. We have
described and illustrated three methods for
assessing the PH assumption: graphical, good-
ness-of-fit (GOF), and time-dependent covariate
methods. Each of these methods has both
advantages and drawbacks. We recommend
that the researcher use at least two of these
approaches when assessing the PH assumption.

Chapters

1. Introduction to Survival
Analysis

2. Kaplan—-Meier Survival
Curves and the Log-Rank
Test

3. The Cox Proportional
Hazards Model and Its
Characteristics

v'4.| Evaluating the Proportional

Hazards Assumption

Next:

v

The Stratified Cox Procedure
6. Extension of the Cox
Proportional Hazards Model
for Time-Dependent Variables

We suggest that the reader review this presen-
tation using the detailed outline that follows.
Then answer the practice exercises and the test
that follow.

The next Chapter (5) is entitled “The Stratified
Cox Procedure.” There, we describe how to use
a stratification procedure to fit a PH model
when one or more of the predictors do not
satisfy the PH assumption.
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Detailed I. Background (pages 164-165)

Outline

II.

III.

A. The formula for the Cox PH model:

h(t,X) = ho(t) exp i B Xi
_1:1 .

Formula for hazard ratio comparing two indi-
viduals,
X — (x;, X;,... ,x;)and X = (X1, Xa,. ., X,):

h(t,X* .
h((tt,X)) = exp Z ﬁi(Xi _Xi)

i=1

Adjusted survival curves using the Cox PH
model:

S(t,X) = [30(,)]eXP[Z/f.X1]

i. To graph S (¢, X), must specify values for
X = (X}, Xa,. .., X,).

ii. To obtain “adjusted” survival curves, usually
use overall mean values for the X’s being
adjusted.

The meaning of the PH assumption

i. Hazard ratio formula shows that hazard
ratio is independent of time:

I, X*)

a =0
h(t, X)

ii. Hazard ratio for two X’s are proportional:
h(t,X*) = 0h(t,X)

Checking the proportional hazards assumption:
overview (pages 165-167)
A. Three methods for checking the PH assumption:

i. Graphical: compare —In —In survival curves
or observed versus predicted curves.
ii. Goodness-of-fit test: use a large sample Z
statistic.
iii. Time-dependent covariates: use product (i.e.,
interaction) terms of the form X x g(¢).

B. Abbreviated illustrations of each method are

provided.

Graphical approach 1: log-log plots
(pages 167-175)

A. A log-log curve is a transformation of an esti-

mated survival curve, where the scale for a
log-log curve is —oo to +oo.
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B. The log-log expression for the Cox model
survival curve is given by

In[-In S(t, X)] ZﬁXJrln[ In So(1)]

C. For the Cox model, the log-log survival curve
for individual X; can be written as the log-log
curve for individual X, plus a linear sum term
that is independent of time . This formula is
given by

In[—In&(2, X))

=In[-InS@X,)] + iﬂi(xu — Xai)

i=1

D. The above log-log formula can be used to check
the PH assumption as follows: the PH model is
appropriate if “empirical” plots of log-log sur-
vival curves are parallel.

E. Two kinds of empirical plots for —In —In S:
i. SisaKM curve

ii. & is an adjusted survival curve where pre-
dictor being assessed is not included in the
Cox regression model.

F. Several examples of log-log plots are provided
using remission data from a clinical trial of
leukemia patients.

G. Problems with log-log curves:
i. How parallel is parallel?
ii. How to categorize a continuous variable?

iii. How to evaluate several variables simulta-
neously?

H. Recommendation about problems:

i. Use small number of categories, meaning-
ful choice, reasonable balance.

ii. With several variables, two options:

a. Compare log-log curves from combina-
tions of categories.

b. Adjust for predictors already satisfying
PH assumption.

Graphical approach 2: observed versus expected
plots (pages 175-180)

A. Graphical analog of the GOF test.
B. Two strategies
i. One-at-a-time: uses KM curves to obtain
observed plots.
ii. Adjusting for other variables: uses stratified
Cox PH model to obtain observed plots.
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Evaluating the Proportional Hazards Assumption

V.

C.

Expected plots obtained by fitting a Cox model
containing the predictor being assessed; substi-
tute into the fitted model the value for each
category of the predictor to obtain the expected
value for each category.
If observed and expected plots are close, con-
clude PH assumption is reasonable.
Drawback: how close is close?
Recommend: conclude PH not satisfied only if
plots are strongly discrepant.
Another drawback: what to do if assessing con-
tinuous variable.
Recommend for continuous variable:
i. Form strata from categories.
ii. Observed plots are KM curves for each cat-
egory.
iili. Two options for expected plots:
a. Use PH model with & — 1 dummy vari-
ables for k categories.
b. Use PH model with continuous predic-
tor and specify predictor values that
distinguish categories.

The goodness-of-fit (GOF) testing approach
(pages 181-183)

A. Appealing approach because

i. provides a test statistic (p-value).

ii. researcher can make clear-cut decision.

References

i. methodological: Schoenfeld (1982), Harrel
and Lee (1986).

ii. SAS and Stata use different GOF formulae.

The method:

i. Schoenfeld residuals for each predictor
uses a chi-square statistic with 1 df.

ii. Correlations between Schoenfeld’s resi-
duals and ranked failure times.

iii. If p-value small, then departure from PH.

Examples using remission data.

Drawbacks:

i. global test: may fail to detect a specific kind
of departure from PH; recommend using
both graphical and GOF methods.

ii. several strategies to choose from, with no
one strategy clearly preferable (one-at-a-
time, all variables, each variable adjusted
for others).
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VI. Assessing the PH assumption using time-
dependent covariates (pages 183-187)

A.

Use extended Cox model: contains product
terms of form X x g(t), where g(¢) is function
of time, e.g., g(t) =t, or log t, or heaviside func-
tion.

One-at-a-time model:

h(t, X) = ho(t) exp[BX + 8Xg(?)]

Test Hy: 6 = 0 using Wald or LR test (chi- square
with 1 df).

Evaluating several predictors simultaneously:

h(t, X) = ho(r) exp <i[ﬁlxi+ 5:‘Xigi(f)]>

i=1
where g;(t) is function of time for ith predictor.
Test Hy: 6 = 6, = --- = §, = O using LR
(chi-square) test with p df.

Examples using remission data.

Two computer programs, required for test:
i. Cox PH model program.
ii. Extended Cox model program.

Drawback: choice of g(¢) not always clear; dif-
ferent choices may lead to different conclusions
about PH assumption.

The dataset “vets.dat” considers survival times in days
for 137 patients from the Veteran’s Administration Lung
Cancer Trial cited by Kalbfleisch and Prentice in their text
(The Statistical Analysis of Survival Time Data, Wiley,

2002). The
(standard

exposure variable of interest is treatment status
= 1, test = 2). Other variables of interest as

control variables are cell type (four types, defined by

dummy va

riables), performance status, disease duration,

age, and prior therapy status. Failure status is defined by
the status variable (0 if censored, 1 if died). A complete list
of the variables is given below.

Column 1

Column 2:
Column 3:
Column 4:
Column 5:
Column 6:
Column 7:

: Treatment (standard = 1, test = 2)

Cell type 1 (large = 1, other = 0)

Cell type 2 (adeno = 1, other = 0)

Cell type 3 (small = 1, other = 0)

Cell type 4 (squamous = 1, other = 0)
Survival time (days)

Performance status (0 = worst,. . ., 100 = best)
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Column 8: Disease duration (months)

Column 9: Age

Column 10: Prior therapy (none = 0, some = 10)

Column 11: Status (0 = censored, 1 = died)

State the hazard function form of the Cox PH model
that describes the effect of the treatment variable and
controls for the variables, cell type, performance sta-
tus, disease duration, age, and prior therapy. In stat-
ing this model, make sure to incorporate the cell type
variable using dummy variables, but do not consider
possible interaction variables in your model.

State three general approaches that can be used to
evaluate whether the PH assumption is satisfied for
the variables included in the model you have given in
question 1.

The following printout is obtained from fitting a
Cox PH model to these data. Using the information
provided, what can you conclude about whether the
PH assumption is satisfied for the variables used in
the model? Explain briefly.

Cox regression Coef.

[95% Conf.

Std. Err. p >|z| Haz. Ratio Interval] P(PH)

0.290
0.400
1.188
0.856
—0.033
0.000
—0.009
0.007

Treatment

Large cell

Adeno cell

Small cell
Performance status
Disease duration
Age

Prior therapy

0.207
0.283
0.301
0.275
0.006
0.009
0.009
0.023

0.162
0.157
0.000
0.002
0.000
0.992
0.358
0.755

1.336
1.491
3.281
2.355
0.968
1.000
0.991
1.007

0.890 2.006
0.857 2.594
1.820 5.915
1.374 4.037
0.958 0.978
0.982 1.018
0.974 1.010
0.962 1.054

0.628
0.033
0.081
0.078
0.000
0.919
0.198
0.145

For the variables used in the PH model in question 1,
describe a strategy for evaluating the PH assumption
using log-log survival curves for variables considered
one-at-a-time.

Again considering the variables used in question 1,
describe a strategy for evaluating the PH assumption
using log-log survival curves that are adjusted for
other variables in the model.
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For the variable “performance status,” describe how
you would evaluate the PH assumption using
observed versus expected survival plots?

For the variable “performance status,” log-log plots
which compare high (>50) with low (<50) are given
by the following graph. Based on this graph, what do
you conclude about the PH assumption with regard to
this variable?

6 3
23
03 High PS
-2 3 Low PS
-4 3 T T T T T T T T T
0 200 400 600 800 1000

What are some of the drawbacks of using the log-log
approach for assessing the PH assumption and what
do you recommend to deal with these drawbacks?

For the variable “performance status,” observed ver-
sus expected plots that compare high (>50) with low
(<50) are given by the following graph. Based on this
graph, what do you conclude about the PH assump-
tion with regard to this variable?

Observed
Expected

Y T T
400 600 800 1000

State the form of an extended Cox model that allows
for the one-at-a-time assessment of the PH assump-
tion for the variable “performance status,” and
describe how you would carry out a statistical test of
the assumption for this variable.

State the form of an extended Cox model that allows
for the simultaneous assessment of the PH assump-
tion for the variables treatment, cell type, perfor-
mance status, disease duration, age, and prior
therapy. For this model, describe how you would
carry out a statistical test of the PH assumption for
these variables. Also, provide a strategy for assessing
which of these variables satisfy the PH assumption
and which do not using the extended Cox model
approach.
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12. Using any of the information provided above and
any additional analyses that you perform with this
dataset, what do you conclude about which variables
satisfy the PH assumption and which variables do not?
In answering this question, summarize any additional
analyses performed.

Test The following questions consider a dataset from a study
by Caplehorn et al. (“Methadone Dosage and Retention of
Patients in Maintenance Treatment,” Med. J. Aust., 1991).
These data comprise the times in days spent by heroin
addicts from entry to departure from one of two metha-
done clinics. There are two additional covariates, namely,
prison record and maximum methadone dose, believed to
affect the survival times. The dataset name is addicts.dat.
A listing of the variables is given below:

Column 1: Subject ID
Column 2: Clinic (1 or 2)

Column 3: Survival status (0 = censored, 1 =
departed from clinic)

Column 4: Survival time in days
Column 5: Prison record (0 = none, 1 = any)
Column 6: Maximum methadone dose (mg/day)

1. The following edited printout was obtained from fit-
ting a Cox PH model to these data:

Cox regression

Analysis time_t: [95% Conf.

survt Coef. Std. Err. p>|z] Haz. Ratio Interval] P(PH)
Clinic -1.009 0.215 0.000 0.365 0.239 0.556 0.001
Prison 0.327 0.167 0.051 1.386 0.999 1.924 0.332
Dose —0.035 0.006 0.000  0.965 0.953 0.977 0.347
No. of subjects: 238 Log likelihood = —673.403

Based on the information provided in this printout,
what do you conclude about which variables satisfy
the PH assumption and which do not? Explain briefly.
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2. Suppose that for the model fit in question 1, log-log
survival curves for each clinic adjusted for prison and
dose are plotted on the same graph. Assume that these
curves are obtained by substituting into the formula
for the estimated survival curve the values for each
clinic and the overall mean values for the prison and
dose variables. Below, we show these two curves. Are
they parallel? Explain your answer.

Clinic 2

Clinic 1

Olj3—(l)07r6(l)roll9(l)0'

3. The following printout was obtained from fitting a
stratified Cox PH model to these data, where the vari-
able being stratified is clinic:

Stratified Cox

regression Analysis [95% Conf.
time.t: survt (in days) = Coef.  Std. Err. p > |z] Haz. Ratio Interval]
Prison 0.389 0.169 0.021 1.475 1.059 2.054
Dose —0.035 0.006 0.000 0.965 0.953 0.978

No. of subjects = 238 Log likelihood = —597.714 Stratified by clinic

Using the above fitted model, we can obtain the
log-log curves below that compare the log-log survival
for each clinic (i.e., stratified by clinic) adjusted for the
variables prison and dose. Using these curves, what do
you conclude about whether or not the clinic variable
satisfies the PH assumption? Explain briefly.

Clinic 2

Clinic 1

T T T T T T T T T T
0 300 600 900
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Consider the two plots of log-log curves below that
compare the log-log survival for the prison variable
ignoring other variables and adjusted for the clinic
and dose variables. Using these curves, what do you
conclude about whether or not the prison variable
satisfies the PH assumption? Explain briefly.

12

12

Log-log curves for prison
ignoring other variables
(i.e., using log-log KM curves)

Log-log curves for prison
adjusted for clinic and dose
(i.e., stratified by prison)

Prison = 1 Prison =1

Prison =0 Prison =0

T T T T T T T T — T T T T T T T T T
0 300 600 900 0 300 600 900

How do your conclusions from question 1 compare
with your conclusions from question 4? If the conclu-
sions differ, which conclusion do you prefer? Explain.

Describe briefly how you would evaluate the PH
assumption for the variable maximum methadone
dose using observed versus expected plots.

State an extended Cox model that would allow you to
assess the PH assumption for the variables clinic,
prison, and dose simultaneously. For this model,
state the null hypothesis for the test of the PH assump-
tion and describe how the likelihood ratio statistic
would be obtained and what its degrees of freedom
would be under the null hypothesis.

State at least one drawback to the use of the extended
Cox model approach described in question 7.

State an extended Cox model that would allow you to
assess the PH assumption for the variable clinic alone,
assuming that the prison and dose variables already
satisfy the PH assumption. For this model, state the
null hypothesis for the test of the PH assumption, and
describe how the likelihood ratio (LR) statistic would
be obtained. What is the degrees of freedom of the LR
test under the null hypothesis?
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10. Consider the situation described in question 9, where

you wish to use an extended Cox model that would
allow you to assess the PH assumption for the variable
clinic alone, assuming that the assumption is satisfied
for the prison and dose variables. Suppose you use the
following extended Cox model:

(1, X) = ho(t) expl, (prison) + f, (dose)
+p;(clinic) + 0; (clinic)g(#)]
where g(7) is defined as follows:

(1) = 1 if¢t > 365days
SW =90 ifr < 365days

For the above model, what is the formula for the hazard
ratio that compares clinic 1 to clinic 2 when ¢ is greater
than 365 days? when ¢ is less than or equal to 365 days?
In terms of the hazard ratio formulae just described,
what specific departure from the PH assumption is
being tested when the null hypothesis is Hy: §; = 0?

. h(t,X) = ho(t) exp[Bi(treatment) + B,(CT1) + B3(CT2)

+ B4(CT3) + Bs(PS) + Be(DD) + B7(Age) + Bs(PT)]

where CTi denotes the cell type i dummy variable, PS
denotes the performance status variable DD denotes
the disease duration variable, and PT denotes the
prior therapy variable.

The three general approaches for assessing the PH
model for the above model are:
(a) graphical, using either log-log plots or observed
versus expected plots;
(b) statistical test;
(c¢) an extended Cox model containing product terms
involving the variables being assessed with some
function(s) of time.

The P(PH) values given in the printout provide good-
ness-of-fit tests for each variable in the fitted model
adjusted for the other variables in the model. The P
(PH) values shown indicate that the large cell type
variables and the performance status variable do not
satisfy the PH assumption, whereas the treatment,
age, disease duration, and prior therapy variables
satisfy the PH assumption, and the adeno and small
cell type variable are of borderline significance.
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4. A strategy for evaluating the PH assumption using

log-log survival curves for variables considered one-
at-a-time is given as follows:

For each variable separately, obtain a plot of log-log
Kaplan-Meier curves for the different categories of
that variable. For the cell type variable, this requires
obtaining a plot of four log-log KM curves, one for
each cell type. (Note that this is not the same as obtain-
ing four separate plots of two log-log curves, where
each plot corresponds to one of the dummy variables
used in the model.) For the variables PS, DD, and Age,
which are interval variables, each variable must be
separately categorized into two or more groups — say,
low versus high values — and KM curves are obtained
for each group. For the variable PT, which is a dichot-
omous variable, two log-log curves are obtained which
compare the “none” versus “some” groups.

For each plot (i.e., one for each variable), those plots
that are noticeably nonparallel indicate variables which
do not satisfy the PH assumption. The remaining vari-
ables are assumed to satisfy the PH assumption.

One strategy for evaluating the PH assumption for each
variable adjusted for the others is to use adjusted log-log
survival curves instead of KM curves separately for each
of the variables in the model. That is, for each variable
separately, a stratified Cox model is fit stratifying on the
given variable while adjusting for the other variables.
Those variables that yield adjusted log-log plots that are
noticeably nonparallel are then to be considered as not
satisfying the PH assumption. The remaining variables
are assumed to satisfy the PH assumption.

A variation of the above strategy uses adjusted log-log
curves for only those variables not satisfying the PH
assumption from a one-at-a-time approach, adjusting
for those variables satisfying the PH assumption from
the one-at-a-time approach. This second iteration
would flag a subset of the one-at-a-time flagged vari-
ables for further iteration. At each new iteration, those
variables found to satisfy the assumption get added to
the list of variables previously determined to satisfy
the assumption.

For the performance status (PS) variable, observed
plots are obtained by categorizing the variable into
strata (say, two strata: low versus high) and then
obtaining KM survival plots for each stratum.
Expected plots can be obtained by fitting a Cox
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model containing the (continuous) PS variable and
then obtaining estimated survival curves for values
of the performance status (PS) variable that represent
summary descriptive statistics for the strata previ-
ously identified. For example, if there are two strata,
say, high (PS > 50) and low (PS < 50), then the values
of PS to be used could be the mean or median PS score
for persons in the high stratum and the mean or
median PS score for persons in the low stratum.

An alternative method for obtaining expected plots
involves first dichotomizing the PS variable - say, into
high and low groups — and then fitting a Cox model
containing the dichotomized PS variable instead of the
original continuous variable. The expected survival
plots for each group are estimated survival curves
obtained for each value of the dichotomized PS variable.

Once observed and expected plots are obtained for each
stratum of the PS variable, they are then compared on
the same graph to determine whether or not
corresponding observed and expected plots are “close.”
If it is determined that, overall, comparisons for each
stratum are close, then it is concluded that the PH
assumption is satisfied for the PH variable. In determin-
ing how close is close, the researcher should look for
noticeably discrepant observed versus expected plots.

The log-log plots that compare high versus low PS
groups (ignoring other variables) are arguably parallel
early in follow-up, and are not comparable later
because survival times for the two groups do not over-
lap after 400 days. These plots do not strongly indicate
that the PH assumption is violated for the variable PS.
This contradicts the conclusion previously obtained
for the PS variable using the P(PH) results.

Drawbacks of the log-log approach are:

e How parallel is parallel?
e How to categorize a continuous variable?
e How to evaluate several variables simultaneously?

Recommendations about problems:

e Look for noticeable nonparallelism; otherwise PH
assumption is OK.

e For continuous variables, use a small number of
categories, a meaningful choice of categories, and
areasonable balance in sample size for categories.
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9.

10.

11.

12.

e With several variables, there are two options:

i. Compare log-log curves from combinations of
categories.

ii. Adjust for predictors already satisfying PH
assumption.

The observed and expected plots are relatively close for
low and high groups separately, although there is some-
what more discrepancy for the high group than for the
low group. Deciding how close is close is quite subjec-
tive for these plots. Nevertheless, because there are no
major discrepancies for either low or high groups, we
consider the PH assumption satisfied for this variable.

h(t,X) = ho(t) exp[B1(PS) + 3(PS)g(1)]

where g(t) is a function of ¢, such as g(t) = ¢, or g(t) =
log ¢, or a heaviside function. The PH assumption is
tested using a 1 df Wald or LR statistic for Hy: 8 = 0.

h(t,X) = ho(t) exp[B(treatment) + B(CT1) + B3(CT2)
+ B4(CT3) + Bs(PS) + Be(DD) + B7(Age) + Bs(PT)

+ 8 (treatment x g(t)) + 8,(CT1 x g(¢)) + 85(CT2 x g(t))
+ 84(CT3 x g(1)) + 35(PS x g(1)) + 5¢(DD x g(1))

+ d7(Age x g(?)) + 8s(PT x g(2))]

where g() is some function of time, such as g(t) =t, or
g(t) = log t, or a heaviside function. To test the PH
assumption simultaneously for all variables, the null
hypothesis is stated as Hy: 8y = 6, = ... = 83 = 0. The
test statistic is a likelihood-ratio statistic of the form

LR=-2InLR — (-21InLp)

where R denotes the reduced (PH) model obtained
when all &’s are 0, and F denotes the full model given
above. Under H, the LR statistic is approximately chi-
square with 8 df.

The question here is somewhat open-ended, leaving the
reader the option to explore additional graphical, GOF,
or extended Cox model approaches for evaluating the
PH assumption for the variables in the model. The con-
clusions from the GOF statistics provided in question 3
are likely to hold up under further scrutiny, so that a
reasonable conclusion is that cell type and performance
status variables do not satisfy the PH assumption, with
the remaining variables satisfying the assumption.
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Introduction
