"""Data classes and utilities used by :class:`iminuit.Minuit`."""
import inspect
from collections import OrderedDict
from argparse import Namespace
from . import _repr_html
from . import _repr_text
import numpy as np
from typing import (
    Dict,
    Iterable,
    Any,
    Union,
    List,
    Tuple,
    Generator,
    Sized,
    Optional,
    Callable,
    TypeVar,
    Generic,
)
import types
import abc

T = TypeVar("T")


class Indexable(Iterable, Sized, Generic[T]):
    """Indexable type for mypy."""

    def __getitem__(self, idx: int) -> T:
        """Get item at index idx."""
        ...  # pragma: no cover


UserBound = Optional[Indexable[Optional[float]]]


class IMinuitWarning(RuntimeWarning):
    """Generic iminuit warning."""


class HesseFailedWarning(IMinuitWarning):
    """HESSE failed warning."""


class PerformanceWarning(UserWarning):
    """Warning about performance issues."""


class BasicView(abc.ABC):
    """
    Array-like view of parameter state.

    Derived classes need to implement methods _set and _get to access
    specific properties of the parameter state.
    """

    __slots__ = ("_minuit", "_ndim")

    Key = Union[int, str, slice, List[Union[int, str]]]

    def __init__(self, minuit: Any, ndim: int = 0):
        """Not to be initialized by users."""
        self._minuit = minuit
        self._ndim = ndim

    def __iter__(self) -> Generator:
        """Get iterator over values."""
        for i in range(len(self)):
            yield self._get(i)

    def __len__(self) -> int:
        """Get number of paramters."""
        return self._minuit.npar  # type: ignore

    @abc.abstractmethod
    def _get(self, idx: int) -> Any:
        return NotImplemented  # pragma: no cover

    @abc.abstractmethod
    def _set(self, idx: int, value: Any) -> None:
        pass  # pragma: no cover

    def __getitem__(self, key: Key) -> Any:
        """
        Get values of the view.

        Parameters
        ----------
        key: int, str, slice, list of int or str
            If the key is an int or str, return corresponding value.
            If it is a slice, list of int or str, return the corresponding subset.
        """
        key = _key2index(self._minuit._var2pos, key)
        if isinstance(key, list):
            return [self._get(i) for i in key]
        return self._get(key)

    def __setitem__(self, key: Key, value: Any) -> None:
        """Assign a new value at key, which can be an index, a parameter name, or a slice."""
        self._minuit._copy_state_if_needed()
        key = _key2index(self._minuit._var2pos, key)
        if isinstance(key, list):
            if _ndim(value) == self._ndim:  # support basic broadcasting
                for i in key:
                    self._set(i, value)
            else:
                if len(value) != len(key):
                    raise ValueError("length of argument does not match slice")
                for i, v in zip(key, value):
                    self._set(i, v)
        else:
            self._set(key, value)

    def __eq__(self, other: object) -> bool:
        """Return true if all values are equal."""
        from typing import Iterable, Sized

        if isinstance(other, Iterable) and isinstance(other, Sized):
            return len(self) == len(other) and all(x == y for x, y in zip(self, other))
        return NotImplemented

    def __repr__(self) -> str:
        """Get detailed text representation."""
        s = f"<{self.__class__.__name__}"
        for (k, v) in zip(self._minuit._pos2var, self):
            s += f" {k}={v}"
        s += ">"
        return s

    def to_dict(self) -> Dict[str, float]:
        """Obtain dict representation."""
        return {k: self._get(i) for i, k in enumerate(self._minuit._pos2var)}


def _ndim(obj: Iterable) -> int:
    from typing import Iterable

    nd = 0
    while isinstance(obj, Iterable):
        nd += 1
        for x in obj:
            if x is not None:
                obj = x
                break
        else:
            break
    return nd


class ValueView(BasicView):
    """Array-like view of parameter values."""

    def _get(self, i: int) -> float:
        return self._minuit._last_state[i].value  # type:ignore

    def _set(self, i: int, value: float) -> None:
        self._minuit._last_state.set_value(i, value)


class ErrorView(BasicView):
    """Array-like view of parameter errors."""

    def _get(self, i: int) -> float:
        return self._minuit._last_state[i].error  # type:ignore

    def _set(self, i: int, value: float) -> None:
        self._minuit._last_state.set_error(i, value)


class FixedView(BasicView):
    """Array-like view of whether parameters are fixed."""

    def _get(self, i: int) -> bool:
        return self._minuit._last_state[i].is_fixed  # type:ignore

    def _set(self, i: int, fix: bool) -> None:
        if fix:
            self._minuit._last_state.fix(i)
        else:
            self._minuit._last_state.release(i)


class LimitView(BasicView):
    """Array-like view of parameter limits."""

    def __init__(self, minuit: Any):
        """Not to be initialized by users."""
        super(LimitView, self).__init__(minuit, 1)

    def _get(self, i: int) -> Tuple[float, float]:
        p = self._minuit._last_state[i]
        return (
            p.lower_limit if p.has_lower_limit else -np.inf,
            p.upper_limit if p.has_upper_limit else np.inf,
        )

    def _set(self, i: int, arg: UserBound) -> None:
        state = self._minuit._last_state
        val = state[i].value
        err = state[i].error
        # changing limits is a cheap operation, start from clean state
        state.remove_limits(i)
        low, high = _normalize_limit(arg)
        if low != -np.inf and high != np.inf:  # both must be set
            if low == high:
                state.fix(i)
            else:
                state.set_limits(i, low, high)
        elif low != -np.inf:  # lower limit must be set
            state.set_lower_limit(i, low)
        elif high != np.inf:  # lower limit must be set
            state.set_upper_limit(i, high)
        # bug in Minuit2: must set parameter value and error again after changing limits
        if val < low:
            val = low
        elif val > high:
            val = high
        state.set_value(i, val)
        state.set_error(i, err)


def _normalize_limit(lim: UserBound) -> Tuple[float, float]:
    if lim is None:
        return (-np.inf, np.inf)
    a, b = lim
    if a is None:
        a = -np.inf
    if b is None:
        b = np.inf
    if a > b:
        raise ValueError("limit " + str(lim) + " is invalid")
    return a, b


class Matrix(np.ndarray):
    """
    Enhanced Numpy ndarray.

    Works like a normal ndarray in computations, but also supports pretty printing in
    ipython and Jupyter notebooks. Elements can be accessed via indices or parameter names.
    """

    __slots__ = ("_var2pos",)

    def __new__(cls, parameters: Union[Dict, Tuple]) -> Any:
        """Not to be initialized by users."""
        if isinstance(parameters, dict):
            var2pos = parameters
        elif isinstance(parameters, tuple):
            var2pos = {x: i for i, x in enumerate(parameters)}
        else:
            raise TypeError("parameters must be tuple or dict")
        n = len(parameters)
        obj = super(Matrix, cls).__new__(cls, (n, n))
        obj._var2pos = var2pos
        return obj

    def __array_finalize__(self, obj: Any) -> None:
        """For internal use."""
        if obj is None:
            self._var2pos = None
        else:
            self._var2pos = getattr(obj, "_var2pos", None)

    def __getitem__(
        self,
        key: Union[Tuple[Union[str, int]], str, int, slice, Iterable[Union[str, int]]],
    ) -> Any:
        """Get matrix element at key."""
        from typing import Iterable

        var2pos = self._var2pos or {}
        if isinstance(key, tuple):  # tuple is special case for __getitem__
            key = tuple(var2pos.get(k, k) for k in key)
        elif isinstance(key, str):
            key = var2pos[key]
        elif isinstance(key, Iterable) and not isinstance(key, np.ndarray):
            key = list(var2pos.get(k, k) for k in key)
            t = super(Matrix, self).__getitem__(key).T
            return super(Matrix, t).__getitem__(key).T
        elif isinstance(key, slice):
            key = slice(var2pos.get(key.start), var2pos.get(key.stop), key.step)
            return super(Matrix, self).__getitem__((key, key))
        return super(Matrix, self).__getitem__(key)

    def to_table(self) -> Tuple[List[List[str]], Tuple[str, ...]]:
        """
        Convert matrix to tabular format.

        The output is consumable by the external
        `tabulate <https://pypi.org/project/tabulate>`_ module.

        Examples
        --------
        >>> import tabulate as tab
        >>> from iminuit import Minuit
        >>> m = Minuit(lambda x, y: x ** 2 + y ** 2, x=1, y=2).migrad()
        >>> tab.tabulate(*m.covariance.to_table())
              x    y
        --  ---  ---
        x     1   -0
        y    -0    4
        """
        names = tuple(self._var2pos)  # type:ignore
        nums = _repr_text.matrix_format(self.flatten())  # type:ignore
        tab = []
        n = len(self)
        for i, name in enumerate(names):
            tab.append([name] + [nums[n * i + j] for j in range(n)])
        return tab, names

    def correlation(self):
        """
        Compute and return correlation matrix.

        If the matrix is already a correlation matrix, this effectively returns a copy
        of the original matrix.
        """
        a = self.copy()
        d = np.diag(a) ** 0.5
        a /= np.outer(d, d) + 1e-100
        return a

    def __repr__(self):
        """Get detailed text representation."""
        return super(Matrix, self).__str__()

    def __str__(self):
        """Get user-friendly text representation."""
        return _repr_text.matrix(self)

    def _repr_html_(self):
        return _repr_html.matrix(self)

    def _repr_pretty_(self, p, cycle):
        if cycle:
            p.text("<Matrix ...>")
        else:
            p.text(str(self))


class FMin:
    """
    Function minimum view.

    This object provides detailed metadata about the function minimum. Inspect this to
    check what exactly happened if the fit did not converge. Use the
    :class:`iminuit.Minuit` object to get the best fit values, their
    uncertainties, or the function value at the minimum. For convenience, you can also
    get a basic OK from :class:`iminuit.Minuit` with the methods
    :attr:`iminuit.Minuit.valid` and :attr:`iminuit.Minuit.accurate`.

    See Also
    --------
    :attr:`iminuit.Minuit.values`
    :attr:`iminuit.Minuit.errors`
    :attr:`iminuit.Minuit.merrors`
    :attr:`iminuit.Minuit.covariance`
    :attr:`iminuit.Minuit.fval`
    :attr:`iminuit.Minuit.valid`
    :attr:`iminuit.Minuit.accurate`
    """

    __slots__ = (
        "_src",
        "_algorithm",
        "_has_parameters_at_limit",
        "_nfcn",
        "_ngrad",
        "_ndof",
        "_edm_goal",
    )

    def __init__(
        self,
        fmin: Any,
        algorithm: str,
        nfcn: int,
        ngrad: int,
        ndof: int,
        edm_goal: float,
    ):
        """Not to be initialized by users."""
        self._src = fmin
        self._algorithm = algorithm
        self._has_parameters_at_limit = False
        for mp in fmin.state:
            if mp.is_fixed or not mp.has_limits:
                continue
            v = mp.value
            e = mp.error
            lb = mp.lower_limit if mp.has_lower_limit else -np.inf
            ub = mp.upper_limit if mp.has_upper_limit else np.inf
            # the 0.5 error threshold is somewhat arbitrary
            self._has_parameters_at_limit |= min(v - lb, ub - v) < 0.5 * e
        self._nfcn = nfcn
        self._ngrad = ngrad
        self._ndof = ndof
        self._edm_goal = edm_goal

    @property
    def algorithm(self) -> str:
        """Get algorithm that was used to compute the function minimum."""
        return self._algorithm

    @property
    def edm(self) -> float:
        """
        Get Estimated Distance to Minimum.

        Minuit uses this criterion to determine whether the fit converged. It depends
        on the gradient and the Hessian matrix. It measures how well the current
        second order expansion around the function minimum describes the function, by
        taking the difference between the predicted (based on gradient and Hessian)
        function value at the minimum and the actual value.
        """
        return self._src.edm  # type:ignore

    @property
    def edm_goal(self) -> float:
        """
        Get EDM threshold value for stopping the minimization.

        The threshold is allowed to be violated by a factor of 10 in some situations.
        """
        return self._edm_goal

    @property
    def fval(self) -> float:
        """Get cost function value at the minimum."""
        return self._src.fval  # type:ignore

    @property
    def reduced_chi2(self) -> float:
        """
        Get chi2/ndof of the fit.

        This returns NaN if the cost function is unbinned or does not support
        reporting the degrees of freedom.
        """
        if np.isfinite(self._ndof):
            return self.fval / self.errordef / self._ndof
        return np.nan

    @property
    def has_parameters_at_limit(self) -> bool:
        """
        Return whether any bounded parameter was fitted close to a bound.

        The estimated error for the affected parameters is usually off. May be an
        indication to remove or loosen the limits on the affected parameter.
        """
        return self._has_parameters_at_limit

    @property
    def nfcn(self) -> int:
        """Get number of function calls so far."""
        return self._nfcn

    @property
    def ngrad(self) -> int:
        """Get number of function gradient calls so far."""
        return self._ngrad

    @property
    def is_valid(self) -> bool:
        """
        Return whether Migrad converged successfully.

        For it to return True, the following conditions need to be fulfilled:

          - :attr:`has_reached_call_limit` is False
          - :attr:`is_above_max_edm` is False

        Note: The actual verdict is computed inside the Minuit2 C++ code, so we
        cannot guarantee that is_valid is exactly equivalent to these conditions.
        """
        return self._src.is_valid  # type:ignore

    @property
    def has_valid_parameters(self) -> bool:
        """
        Return whether parameters are valid.

        This is the same as :attr:`is_valid` and only kept for backward compatibility.
        """
        return self.is_valid

    @property
    def has_accurate_covar(self) -> bool:
        """
        Return whether the covariance matrix is accurate.

        While Migrad runs, it computes an approximation to the current Hessian
        matrix. If the strategy is set to 0 or if the fit did not converge, the
        inverse of this approximation is returned instead of the inverse of the
        accurately computed Hessian matrix. This property returns False if the
        approximation has been returned instead of an accurate matrix computed by
        the Hesse method.
        """
        return self._src.has_accurate_covar  # type:ignore

    @property
    def has_posdef_covar(self) -> bool:
        """
        Return whether the Hessian matrix is positive definite.

        This must be the case if the extremum is a minimum, otherwise it is a saddle
        point. If it returns False, the fitted result may be correct, but the reported
        uncertainties are false. This may affect some parameters or all of them.
        Possible causes:

            * Model contains redundanted parameters that are 100% correlated. Fix:
              remove the parameters that are 100% correlated.
            * Cost function is not computed in double precision. Fix: try adjusting
              :attr:`iminuit.Minuit.precision` or change the cost function to compute
              in double precision.
            * Cost function is not analytical near the minimum. Fix: change the cost
              function to something analytical. Functions are not analytical if:

                * It does computations based on (pseudo)random numbers.
                * It contains vertical steps, for example from code like this::

                      if cond:
                          return value1
                      else:
                          return value2
        """
        return self._src.has_posdef_covar  # type:ignore

    @property
    def has_made_posdef_covar(self) -> bool:
        """
        Return whether the matrix was forced to be positive definite.

        While Migrad runs, it computes an approximation to the current Hessian matrix.
        It can happen that this approximation is not positive definite, but that is
        required to compute the next Newton step. Migrad then adds an appropriate
        diagonal matrix to enforce positive definiteness.

        If the fit has converged successfully, this should always return False. If
        Minuit forced the matrix to be positive definite, the parameter uncertainties
        are false, see :attr:`has_posdef_covar` for more details.
        """
        return self._src.has_made_posdef_covar  # type:ignore

    @property
    def hesse_failed(self) -> bool:
        """Return whether the last call to Hesse failed."""
        return self._src.hesse_failed  # type:ignore

    @property
    def has_covariance(self) -> bool:
        """
        Return whether a covariance matrix was computed at all.

        This is false if the Simplex minimization algorithm was used instead of
        Migrad, in which no approximation to the Hessian is computed.
        """
        return self._src.has_covariance  # type:ignore

    @property
    def is_above_max_edm(self) -> bool:
        """
        Return whether the EDM value is below the convergence threshold.

        Returns True, if the fit did not converge; otherwise returns False.
        """
        return self._src.is_above_max_edm  # type:ignore

    @property
    def has_reached_call_limit(self) -> bool:
        """
        Return whether Migrad exceeded the allowed number of function calls.

        Returns True true, the fit was stopped before convergence was reached;
        otherwise returns False.
        """
        return self._src.has_reached_call_limit  # type:ignore

    @property
    def errordef(self) -> float:
        """Equal to the value of :attr:`iminuit.Minuit.errordef` when Migrad ran."""
        return self._src.errordef  # type:ignore

    def __eq__(self, other: object) -> bool:
        """Return True if all attributes are equal."""

        def relaxed_equal(k: str, a: object, b: object) -> bool:
            a = getattr(a, k)
            b = getattr(b, k)
            if isinstance(a, float) and np.isnan(a):
                return np.isnan(b)  # type:ignore
            return a == b  # type:ignore

        return all(relaxed_equal(k, self, other) for k in self.__slots__)

    def __repr__(self) -> str:
        """Get detailed text representation."""
        s = "<FMin"
        for key in sorted(dir(self)):
            if key.startswith("_"):
                continue
            val = getattr(self, key)
            s += f" {key}={val!r}"
        s += ">"
        return s

    def __str__(self) -> str:
        """Get user-friendly text representation."""
        return _repr_text.fmin(self)  # type:ignore

    def _repr_html_(self) -> str:
        return _repr_html.fmin(self)  # type:ignore

    def _repr_pretty_(self, p: Any, cycle: bool) -> None:
        if cycle:
            p.text("<FMin ...>")
        else:
            p.text(str(self))


class Param:
    """Data object for a single Parameter."""

    __slots__ = (
        "number",
        "name",
        "value",
        "error",
        "merror",
        "is_const",
        "is_fixed",
        "lower_limit",
        "upper_limit",
    )

    def __init__(
        self, *args: Union[int, str, float, Optional[Tuple[float, float]], bool]
    ):
        """Not to be initialized by users."""
        assert len(args) == len(self.__slots__)
        for k, arg in zip(self.__slots__, args):
            setattr(self, k, arg)

    def __eq__(self, other: object) -> bool:
        """Return True if all values are equal."""
        return all(getattr(self, k) == getattr(other, k) for k in self.__slots__)

    def __repr__(self) -> str:
        """Get detailed text representation."""
        pairs = []
        for k in self.__slots__:
            v = getattr(self, k)
            pairs.append(f"{k}={v!r}")
        return "Param(" + ", ".join(pairs) + ")"

    @property
    def has_limits(self):
        """Query whether the parameter has an lower or upper limit."""
        return self.has_lower_limit or self.has_upper_limit

    @property
    def has_lower_limit(self):
        """Query whether parameter has a lower limit."""
        return self.lower_limit is not None

    @property
    def has_upper_limit(self):
        """Query whether parameter has an upper limit."""
        return self.upper_limit is not None

    def __str__(self) -> str:
        """Get user-friendly text representation."""
        return _repr_text.params([self])  # type:ignore

    def _repr_pretty_(self, p: Any, cycle: bool) -> None:
        if cycle:
            p.text("Param(...)")
        else:
            p.text(str(self))


class Params(tuple):
    """Tuple-like holder of parameter data objects."""

    __slots__ = ()

    def _repr_html_(self):
        return _repr_html.params(self)

    def to_table(self):
        """
        Convert parameter data to a tabular format.

        The output is consumable by the external
        `tabulate <https://pypi.org/project/tabulate>`_ module.

        Examples
        --------
        >>> import tabulate as tab
        >>> from iminuit import Minuit
        >>> m = Minuit(lambda x, y: x ** 2 + (y / 2) ** 2 + 1, x=0, y=0)
        >>> m.fixed["x"] = True
        >>> m.migrad().minos()
        >>> tab.tabulate(*m.params.to_table())
          pos  name      value    error  error-    error+    limit-    limit+    fixed
        -----  ------  -------  -------  --------  --------  --------  --------  -------
            0  x             0      0.1                                          yes
            1  y             0      1.4  -1.0      1.0
        """
        header = [
            "pos",
            "name",
            "value",
            "error",
            "error-",
            "error+",
            "limit-",
            "limit+",
            "fixed",
        ]
        tab = []
        for i, mp in enumerate(self):
            name = mp.name
            row = [i, name]
            me = mp.merror
            if me:
                val, err, mel, meu = _repr_text.pdg_format(mp.value, mp.error, *me)
            else:
                val, err = _repr_text.pdg_format(mp.value, mp.error)
                mel = ""
                meu = ""
            row += [
                val,
                err,
                mel,
                meu,
                f"{mp.lower_limit}" if mp.lower_limit is not None else "",
                f"{mp.upper_limit}" if mp.upper_limit is not None else "",
                "yes" if mp.is_fixed else "",
            ]
            tab.append(row)
        return tab, header

    def __getitem__(self, key):
        """Get item at key, which can be an index or a parameter name."""
        if isinstance(key, str):
            for i, p in enumerate(self):
                if p.name == key:
                    break
            key = i
        return super(Params, self).__getitem__(key)

    def __str__(self):
        """Get user-friendly text representation."""
        return _repr_text.params(self)

    def _repr_pretty_(self, p, cycle):
        if cycle:
            p.text("Params(...)")
        else:
            p.text(str(self))


class MError:
    """Minos data object.

    Attributes
    ----------
    number : int
        Parameter index.
    name : str
        Parameter name.
    lower : float
        Lower error.
    upper : float
        Upper error.
    is_valid : bool
        Whether Minos computation was successful.
    lower_valid : bool
        Whether downward scan was successful.
    upper_valid : bool
        Whether upward scan was successful.
    at_lower_limit : bool
        Whether scan reached lower limit.
    at_upper_limit : bool
        Whether scan reached upper limit.
    at_lower_max_fcn : bool
        Whether allowed number of function evaluations was exhausted.
    at_upper_max_fcn : bool
        Whether allowed number of function evaluations was exhausted.
    lower_new_min : float
        Parameter value for new minimum, if one was found in downward scan.
    upper_new_min : float
        Parameter value for new minimum, if one was found in upward scan.
    nfcn : int
        Number of function calls.
    min : float
        Function value at the new minimum.
    """

    __slots__ = (
        "number",
        "name",
        "lower",
        "upper",
        "is_valid",
        "lower_valid",
        "upper_valid",
        "at_lower_limit",
        "at_upper_limit",
        "at_lower_max_fcn",
        "at_upper_max_fcn",
        "lower_new_min",
        "upper_new_min",
        "nfcn",
        "min",
    )

    def __init__(self, *args: Union[int, str, float, bool]):
        """Not to be initialized by users."""
        assert len(args) == len(self.__slots__)
        for k, arg in zip(self.__slots__, args):
            setattr(self, k, arg)

    def __eq__(self, other: object) -> bool:
        """Return True if all values are equal."""
        return all(getattr(self, k) == getattr(other, k) for k in self.__slots__)

    def __repr__(self) -> str:
        """Get detailed text representation."""
        s = "<MError"
        for idx, k in enumerate(self.__slots__):
            v = getattr(self, k)
            s += f" {k}={v!r}"
        s += ">"
        return s

    def __str__(self) -> str:
        """Get user-friendly text representation."""
        return _repr_text.merrors({None: self})  # type:ignore

    def _repr_html_(self) -> str:
        return _repr_html.merrors({None: self})  # type:ignore

    def _repr_pretty_(self, p: Any, cycle: bool) -> None:
        if cycle:
            p.text("<MError ...>")
        else:
            p.text(str(self))


class MErrors(OrderedDict):
    """Dict-like map from parameter name to Minos result object."""

    __slots__ = ()

    def _repr_html_(self):
        return _repr_html.merrors(self)

    def __repr__(self):
        """Get detailed text representation."""
        return "<MErrors\n  " + ",\n  ".join(repr(x) for x in self.values()) + "\n>"

    def __str__(self):
        """Get user-friendly text representation."""
        return _repr_text.merrors(self)

    def _repr_pretty_(self, p, cycle):
        if cycle:
            p.text("<MErrors ...>")
        else:
            p.text(str(self))

    def __getitem__(self, key):
        """Get item at key, which can be an index or a parameter name."""
        if isinstance(key, int):
            if key < 0:
                key += len(self)
            if key < 0 or key >= len(self):
                raise IndexError("index out of range")
            for i, k in enumerate(self):
                if i == key:
                    break
            key = k
        return OrderedDict.__getitem__(self, key)


def _jacobi(
    fn: Callable, x: np.ndarray, dx: np.ndarray, tol: float
) -> Tuple[np.ndarray, np.ndarray]:
    assert x.ndim == 1
    assert dx.ndim == 1
    assert np.all(dx >= 0)
    assert tol > 0
    y = fn(x)
    yrank = np.ndim(y)
    jac = np.zeros((1 if yrank == 0 else len(y), len(x)))
    h = np.zeros(len(x))
    for i, hi in enumerate(dx):
        if i > 0:
            h[i - 1] = 0
        if hi == 0:
            continue
        h[i] = hi
        prev_esq = np.inf
        for iter in range(20):
            assert h[i] > 0
            yu = fn(x + h)
            yd = fn(x - h)
            du = (yu - y) / h[i]
            dd = (y - yd) / h[i]
            d = 0.5 * (du + dd)
            delta = du - dd
            if np.all(np.abs(delta) <= tol * np.abs(d)):
                jac[:, i] = d
                break
            esq = np.dot(delta, delta)
            if esq > prev_esq:
                # no convergence, use previous more accurate jac[:, i]
                break
            jac[:, i] = d
            prev_esq = esq
            h[i] *= 0.1
    return y, jac


def propagate(
    fn: Callable, x: Indexable[float], cov: Indexable[Indexable[float]]
) -> Tuple[np.ndarray, np.ndarray]:
    """
    Numerically propagates the covariance into a new space.

    The function does error propagation. It computes C' = J C J^T, where C is the
    covariance matrix of the input, C' the matrix of the output, and J is the Jacobi
    matrix of first derivatives of the mapping function fn. The Jacobi matrix is
    computed numerically.

    Parameters
    ----------
    fn: callable
        Vectorized function that computes y = fn(x).
    x: array-like with shape (N,)
        Input vector.
    cov: array-like with shape (N, N)
        Covariance matrix of input vector.

    Returns
    -------
    y, ycov
        y is the result of fn(x)
        ycov is the propagated covariance matrix.
    """
    x = np.atleast_1d(x)  # type:ignore
    cov = np.atleast_2d(cov)  # type:ignore
    tol = 1e-2
    dx = (np.diag(cov) * tol) ** 0.5
    if not np.all(dx >= 0):
        raise ValueError("diagonal elements of covariance matrix must be non-negative")
    y, jac = _jacobi(fn, x, dx, tol)
    ycov = np.einsum("ij,kl,jl", jac, jac, cov)
    return y, np.squeeze(ycov) if np.ndim(y) == 0 else ycov


def make_func_code(params: Indexable[str]) -> Namespace:
    """
    Make a func_code object to fake a function signature.

    Example::

        def f(a, b): ...

        f.func_code = make_func_code(["x", "y"])
    """
    return Namespace(co_varnames=tuple(params), co_argcount=len(params))


def make_with_signature(
    callable: Callable, *varnames: str, **replacements: str
) -> Callable:
    """
    Return new callable with altered signature.

    Parameters
    ----------
    *varnames: sequence of str
        Replace the first N argument names with these.
    **replacements: mapping of str to str
        Replace old argument name (key) with new argument name (value).

    Returns
    -------
    callable with new argument names.
    """
    from typing import Tuple

    if replacements:
        vars = describe(callable)
        if vars:
            n = len(varnames)
            if n > len(vars):
                raise ValueError("varnames longer than original signature")
            vars[:n] = varnames
        for k, v in replacements.items():
            vars[vars.index(k)] = v
        vars = tuple(vars)
    else:
        vars = varnames

    if hasattr(callable, "__code__"):
        c = callable.__code__
        if c.co_argcount != len(vars):
            raise ValueError("number of parameters do not match")
        if hasattr(c, "replace"):  # this was added after 3.6
            # calling this introduces no overhead compared to original function
            code = c.replace(co_varnames=vars)
            return types.FunctionType(code, globals())

    # fallback implementation with additional overhead
    class Caller:
        def __init__(self, varnames: Tuple[str, ...]):
            self.func_code = make_func_code(varnames)  # type:ignore

        def __call__(self, *args: object) -> object:
            return callable(*args)

    return Caller(vars)


def merge_signatures(
    callables: Iterable[Callable],
) -> Tuple[List[str], List[Tuple[int, ...]]]:
    """
    Merge signatures of callables with positional arguments.

    This is best explained by an example::

        def f(x, y, z): ...

        def g(x, p): ...

        parameters, mapping = merge_signatures(f, g)
        # parameters is ('x', 'y', 'z', 'p')
        # mapping is ((0, 1, 2), (0, 3))

    Parameters
    ----------
    callable : callable
        Callable whose parameters can be extracted with :func:`describe`.

    Returns
    -------
    tuple(parameters, mapping)
        parameters is the tuple of the merged parameter names.
        mapping contains the mapping of parameters indices from the merged signature to
        the original signatures.
    """
    from typing import List

    args: List[str] = []
    mapping = []

    for f in callables:
        map = []
        for i, k in enumerate(describe(f)):
            if k in args:
                map.append(args.index(k))
            else:
                map.append(len(args))
                args.append(k)
        mapping.append(tuple(map))

    return args, mapping


def describe(callable: Callable) -> List[str]:
    """
    Attempt to extract the function argument names.

    Parameters
    ----------
    callable : callable
        Callable whose parameters should be extracted.

    Returns
    -------
    list
        Returns a list of strings with the parameters names if successful and an empty
        list otherwise.

    Notes
    -----
    Parameter names are extracted with the following three methods, which are attempted
    in order. The first to succeed determines the result.

    1. Using ``obj.func_code``. If an objects has a ``func_code`` attribute, it is used
       to detect the parameters. Examples::

           def f(*args): # no signature
               x, y = args
               return (x - 2) ** 2 + (y - 3) ** 2

           f.func_code = make_func_code(("x", "y"))

       Users are encouraged to use this mechanism to provide signatures for objects that
       otherwise would not have a detectable signature. The function
       :func:`make_func_code` can be used to generate an appropriate func_code object.
       An example where this is useful is shown in one of the tutorials.

    2. Using :func:`inspect.signature`. The :mod:`inspect` module provides a general
       function to extract the signature of a Python callable. It works on most
       callables, including Functors like this::

        class MyLeastSquares:
            def __call__(self, a, b):
                # ...

    3. Using the docstring. The docstring is textually parsed to detect the parameter
       names. This requires that a docstring is present which follows the Python
       standard formatting for function signatures.

    Ambiguous cases with positional and keyword argument are handled in the following
    way::

        # describe returns [a, b];
        # *args and **kwargs are ignored
        def fcn(a, b, *args, **kwargs): ...

        # describe returns [a, b, c];
        # positional arguments with default values are detected
        def fcn(a, b, c=1): ...
    """
    if _address_of_cfunc(callable) != 0:
        return []
    return (
        _arguments_from_func_code(callable)
        or _arguments_from_inspect(callable)
        or _arguments_from_docstring(callable)
    )


def _arguments_from_func_code(obj: Any) -> List[str]:
    # Check (faked) f.func_code; for backward-compatibility with iminuit-1.x
    if hasattr(obj, "func_code"):
        fc = obj.func_code
        return list(fc.co_varnames[: fc.co_argcount])
    return []


def _arguments_from_inspect(obj: Callable) -> List[str]:
    try:
        # fails for builtin on Windows and OSX in Python 3.6
        signature = inspect.signature(obj)
    except ValueError:
        return []

    args = []
    for name, par in signature.parameters.items():
        # stop when variable number of arguments is encountered
        if par.kind is inspect.Parameter.VAR_POSITIONAL:
            break
        # stop when keyword argument is encountered
        if par.kind is inspect.Parameter.VAR_KEYWORD:
            break
        args.append(name)
    return args


def _arguments_from_docstring(obj: Callable) -> List[str]:
    doc = inspect.getdoc(obj)

    if doc is None:
        return []

    # Examples of strings we want to parse:
    #   min(iterable, *[, default=obj, key=func]) -> value
    #   min(arg1, arg2, *args, *[, key=func]) -> value
    #   Foo.bar(self, int ncall_me =10000, [resume=True, int nsplit=1])

    try:
        # function wrapper functools.partial does not offer __name__,
        # we cannot extract the signature in this case
        name = obj.__name__
    except AttributeError:
        return []

    token = name + "("
    start = doc.find(token)
    if start < 0:
        return []
    start += len(token)

    nbrace = 1
    for ich, ch in enumerate(doc[start:]):
        if ch == "(":
            nbrace += 1
        elif ch == ")":
            nbrace -= 1
        if nbrace == 0:
            break
    items = [x.strip(" []") for x in doc[start : start + ich].split(",")]

    if items[0] == "self":
        items = items[1:]

    #   "iterable", "*", "default=obj", "key=func"
    #   "arg1", "arg2", "*args", "*", "key=func"
    #   "int ncall_me =10000", "resume=True", "int nsplit=1"

    try:
        i = items.index("*args")
        items = items[:i]
    except ValueError:
        pass

    #   "iterable", "*", "default=obj", "key=func"
    #   "arg1", "arg2", "*", "key=func"
    #   "int ncall_me =10000", "resume=True", "int nsplit=1"

    def extract(s: str) -> str:
        a = s.find(" ")
        b = s.find("=")
        if a < 0:
            a = 0
        if b < 0:
            b = len(s)
        return s[a:b].strip()

    items = [extract(x) for x in items if x != "*"]

    #   "iterable", "default", "key"
    #   "arg1", "arg2", "key"
    #   "ncall_me", "resume", "nsplit"

    return items


def _guess_initial_step(val: float) -> float:
    return 1e-2 * val if val != 0 else 1e-1  # heuristic


def _key2index_from_slice(var2pos: Dict[str, int], key: slice) -> List[int]:
    start = var2pos[key.start] if isinstance(key.start, str) else key.start
    stop = var2pos[key.stop] if isinstance(key.stop, str) else key.stop
    start, stop, step = slice(start, stop, key.step).indices(len(var2pos))
    return list(range(start, stop, step))


def _key2index_item(var2pos: Dict[str, int], key: Union[str, int]) -> int:
    if isinstance(key, str):
        return var2pos[key]
    i = key
    if i < 0:
        i += len(var2pos)
    if i < 0 or i >= len(var2pos):
        raise IndexError
    return i


def _key2index(
    var2pos: Dict[str, int], key: Union[slice, Iterable[Union[str, int]], str, int]
) -> Union[int, List[int]]:
    from typing import Iterable

    if isinstance(key, slice):
        return _key2index_from_slice(var2pos, key)
    if not isinstance(key, str) and isinstance(key, Iterable):
        return [_key2index_item(var2pos, k) for k in key]
    return _key2index_item(var2pos, key)


def _address_of_cfunc(fcn: Any) -> int:
    from ctypes import c_void_p, c_double, c_uint32, POINTER, CFUNCTYPE, cast

    c_sig = CFUNCTYPE(c_double, c_uint32, POINTER(c_double))

    fcn = getattr(fcn, "ctypes", None)
    if isinstance(fcn, c_sig):
        return cast(fcn, c_void_p).value  # type: ignore
    return 0


del Any
del Dict
del Union
del Iterable
del Callable
del T
del Optional
del Sized
del Tuple
del Generator
del List
