# Copyright (c) 2012-2019 by the GalSim developers team on GitHub
# https://github.com/GalSim-developers
#
# This file is part of GalSim: The modular galaxy image simulation toolkit.
# https://github.com/GalSim-developers/GalSim
#
# GalSim is free software: redistribution and use in source and binary forms,
# with or without modification, are permitted provided that the following
# conditions are met:
#
# 1. Redistributions of source code must retain the above copyright notice, this
#    list of conditions, and the disclaimer given in the accompanying LICENSE
#    file.
# 2. Redistributions in binary form must reproduce the above copyright notice,
#    this list of conditions, and the disclaimer given in the documentation
#    and/or other materials provided with the distribution.
#

import numpy as np
import weakref

from . import _galsim
from .errors import GalSimRangeError, GalSimValueError, GalSimIncompatibleValuesError
from .errors import convert_cpp_errors
from .utilities import isinteger

class BaseDeviate(object):
    """Base class for all the various random deviates.

    This holds the essential random number generator that all the other classes use.

    All deviates take an initial ``seed`` argument that is used to seed the underlying random number
    generator.  It has three different kinds of behavior.

    1. An integer value can be provided to explicitly seed the random number generator with a
       particular value.  This is useful to have deterministic behavior.  If you seed with an
       integer value, the subsequent series of "random" values will be the same each time you
       run the program.

    2. A seed of 0 or None means to pick some arbitrary value that will be different each time
       you run the program.  Currently, this tries to get a seed from /dev/urandom if possible.
       If that doesn't work, then it creates a seed from the current time.  You can also get this
       behavior by omitting the seed argument entirely.  (i.e. the default is None.)

    3. Providing another BaseDeviate object as the seed will make the new BaseDeviate share the
       same underlying random number generator as the other BaseDeviate.  So you can make one
       BaseDeviate (of any type), and seed it with a particular deterministic value.  Then if you
       pass that BaseDeviate to any other one you make, they will both be using the same RNG and
       the series of "random" values will be deterministic.

    **Usage**:

    There is not much you can do with something that is only known to be a BaseDeviate rather than
    one of the derived classes other than construct it and change the seed, and use it as an
    argument to pass to other BaseDeviate constructors::

        >>> rng = galsim.BaseDeviate(215324)
        >>> rng()
        Traceback (most recent call last):
        File "<stdin>", line 1, in <module>
        TypeError: 'BaseDeviate' object is not callable
        >>> ud = galsim.UniformDeviate(rng)
        >>> ud()
        0.58736140513792634
        >>> ud2 = galsim.UniformDeviate(215324)
        >>> ud2()
        0.58736140513792634
    """
    def __init__(self, seed=None):
        self._rng_type = _galsim.BaseDeviateImpl
        self._rng_args = ()
        self.reset(seed)

    def seed(self, seed=0):
        """Seed the pseudo-random number generator with a given integer value.

        Parameters:
            seed:       An int value to be used to seed the random number generator.  Using 0
                        means to generate a seed from the system. [default: 0]
        """
        if seed == int(seed):
            self._seed(int(seed))
        else:
            raise TypeError("BaseDeviate seed must be an integer.  Got %s"%seed)

    def _seed(self, seed=0):
        """Equivalent to `seed`, but without any type checking.
        """
        self._rng.seed(seed)

    def reset(self, seed=None):
        """Reset the pseudo-random number generator, severing connections to any other deviates.
        Providing another `BaseDeviate` object as the seed connects this deviate with the other
        one, so they will both use the same underlying random number generator.

        Parameters:
            seed:       Something that can seed a `BaseDeviate`: an integer seed or another
                        `BaseDeviate`.  Using None means to generate a seed from the system.
                        [default: None]
        """
        if isinstance(seed, BaseDeviate):
            self._reset(seed)
        elif isinstance(seed, str):
            with convert_cpp_errors():
                self._rng = self._rng_type(_galsim.BaseDeviateImpl(seed), *self._rng_args)
        elif seed is None:
            with convert_cpp_errors():
                self._rng = self._rng_type(_galsim.BaseDeviateImpl(0), *self._rng_args)
        elif isinteger(seed):
            with convert_cpp_errors():
                self._rng = self._rng_type(_galsim.BaseDeviateImpl(int(seed)), *self._rng_args)
        else:
            raise TypeError("BaseDeviate must be initialized with either an int or another "
                            "BaseDeviate")

    def _reset(self, rng):
        """Equivalent to `reset`, but rng must be a `BaseDeviate` (not an int), and there
        is no type checking.
        """
        with convert_cpp_errors():
            self._rng = self._rng_type(rng._rng, *self._rng_args)

    def duplicate(self):
        """Create a duplicate of the current `BaseDeviate` object.

        The subsequent series from each copy of the `BaseDeviate` will produce identical values::

            >>> u = galsim.UniformDeviate(31415926)
            >>> u()
            0.17100770119577646
            >>> u2 = u.duplicate()
            >>> u()
            0.49095047544687986
            >>> u()
            0.10306670609861612
            >>> u2()
            0.49095047544687986
            >>> u2()
            0.10306670609861612
            >>> u2()
            0.13129289541393518
            >>> u()
            0.13129289541393518
        """
        ret = BaseDeviate.__new__(self.__class__)
        ret.__dict__.update(self.__dict__)
        with convert_cpp_errors():
            rng = _galsim.BaseDeviateImpl(self.serialize())
            ret._rng = self._rng_type(rng, *ret._rng_args)
        return ret

    def __copy__(self):
        return self.duplicate()

    def __getstate__(self):
        d = self.__dict__.copy()
        d['rng_str'] = self.serialize()
        d.pop('_rng')
        return d

    def __setstate__(self, d):
        self.__dict__ = d
        with convert_cpp_errors():
            rng = _galsim.BaseDeviateImpl(d['rng_str'])
            self._rng = self._rng_type(rng, *self._rng_args)

    def clearCache(self):
        """Clear the internal cache of the `BaseDeviate`, if any.  This is currently only relevant
        for `GaussianDeviate`, since it generates two values at a time, saving the second one to
        use for the next output value.
        """
        self._rng.clearCache()

    def discard(self, n):
        """Discard n values from the current sequence of pseudo-random numbers.
        """
        self._rng.discard(int(n))

    def raw(self):
        """Generate the next pseudo-random number and rather than return the appropriate kind
        of random deviate for this class, just return the raw integer value that would have been
        used to generate this value.
        """
        return int(self._rng.raw())

    def generate(self, array):
        """Generate many pseudo-random values, filling in the values of a numpy array.
        """
        array_1d = np.ascontiguousarray(array.ravel(),dtype=float)
        #assert(array_1d.strides[0] == array_1d.itemsize)
        self._rng.generate(len(array_1d), array_1d.ctypes.data)
        if array_1d.data != array.data:
            # array_1d is not a view into the original array.  Need to copy back.
            np.copyto(array, array_1d.reshape(array.shape), casting='unsafe')

    def add_generate(self, array):
        """Generate many pseudo-random values, adding them to the values of a numpy array.
        """
        array_1d = np.ascontiguousarray(array.ravel(),dtype=float)
        #assert(array_1d.strides[0] == array_1d.itemsize)
        self._rng.add_generate(len(array_1d), array_1d.ctypes.data)
        if array_1d.data != array.data:
            # array_1d is not a view into the original array.  Need to copy back.
            np.copyto(array, array_1d.reshape(array.shape), casting='unsafe')

    def __eq__(self, other):
        return (self is other or
                (isinstance(other, self.__class__) and
                 self._rng_type == other._rng_type and
                 self._rng_args == other._rng_args and
                 self.serialize() == other.serialize()))

    def __ne__(self, other):
        return not self.__eq__(other)

    __hash__ = None

    def serialize(self):
        return str(self._rng.serialize())

    def _seed_repr(self):
        s = self.serialize().split(' ')
        return " ".join(s[:3])+" ... "+" ".join(s[-3:])

    def __repr__(self):
        return "galsim.BaseDeviate(%r)"%self._seed_repr()

    def __str__(self):
        return "galsim.BaseDeviate(%r)"%self._seed_repr()

class UniformDeviate(BaseDeviate):
    """Pseudo-random number generator with uniform distribution in interval [0.,1.).

    Successive calls to ``u()`` generate pseudo-random values distributed uniformly in the interval
    [0., 1.)::

        >>> u = galsim.UniformDeviate(31415926)
        >>> u()
        0.17100770119577646
        >>> u()
        0.49095047544687986

    Parameters:
        seed:       Something that can seed a `BaseDeviate`: an integer seed or another
                    `BaseDeviate`.  Using 0 means to generate a seed from the system.
                    [default: None]

    """
    def __init__(self, seed=None):
        self._rng_type = _galsim.UniformDeviateImpl
        self._rng_args = ()
        self.reset(seed)

    def __call__(self):
        """Draw a new random number from the distribution.

        Returns a uniform deviate between 0 and 1.
        """
        return self._rng.generate1()

    def __repr__(self):
        return 'galsim.UniformDeviate(seed=%r)'%(self._seed_repr())
    def __str__(self):
        return 'galsim.UniformDeviate()'


class GaussianDeviate(BaseDeviate):
    """Pseudo-random number generator with Gaussian distribution.

    See http://en.wikipedia.org/wiki/Gaussian_distribution for further details.

    Successive calls to ``g()`` generate pseudo-random values distributed according to a Gaussian
    distribution with the provided ``mean``, ``sigma``::

        >>> g = galsim.GaussianDeviate(31415926)
        >>> g()
        0.5533754000847082
        >>> g()
        1.0218588970190354

    Parameters:
        seed:       Something that can seed a `BaseDeviate`: an integer seed or another
                    `BaseDeviate`.  Using 0 means to generate a seed from the system.
                    [default: None]
        mean:       Mean of Gaussian distribution. [default: 0.]
        sigma:      Sigma of Gaussian distribution. [default: 1.; Must be > 0]
    """
    def __init__(self, seed=None, mean=0., sigma=1.):
        if sigma < 0.:
            raise GalSimRangeError("GaussianDeviate sigma must be > 0.", sigma, 0.)
        self._rng_type = _galsim.GaussianDeviateImpl
        self._rng_args = (float(mean), float(sigma))
        self.reset(seed)

    @property
    def mean(self):
        """The mean of the Gaussian distribution.
        """
        return self._rng_args[0]

    @property
    def sigma(self):
        """The sigma of the Gaussian distribution.
        """
        return self._rng_args[1]

    def __call__(self):
        """Draw a new random number from the distribution.

        Returns a Gaussian deviate with the given mean and sigma.
        """
        return self._rng.generate1()

    def generate_from_variance(self, array):
        """Generate many Gaussian deviate values using the existing array values as the
        variance for each.
        """
        array_1d = np.ascontiguousarray(array.ravel(), dtype=float)
        #assert(array_1d.strides[0] == array_1d.itemsize)
        self._rng.generate_from_variance(len(array_1d), array_1d.ctypes.data)
        if array_1d.data != array.data:
            # array_1d is not a view into the original array.  Need to copy back.
            np.copyto(array, array_1d.reshape(array.shape), casting='unsafe')

    def __repr__(self):
        return 'galsim.GaussianDeviate(seed=%r, mean=%r, sigma=%r)'%(
                self._seed_repr(), self.mean, self.sigma)
    def __str__(self):
        return 'galsim.GaussianDeviate(mean=%r, sigma=%r)'%(self.mean, self.sigma)


class BinomialDeviate(BaseDeviate):
    """Pseudo-random Binomial deviate for ``N`` trials each of probability ``p``.

    ``N`` is number of 'coin flips,' ``p`` is probability of 'heads,' and each call returns an
    integer value where 0 <= value <= N gives the number of heads.  See
    http://en.wikipedia.org/wiki/Binomial_distribution for more information.

    Successive calls to ``b()`` generate pseudo-random integer values distributed according to a
    binomial distribution with the provided ``N``, ``p``::

        >>> b = galsim.BinomialDeviate(31415926, N=10, p=0.3)
        >>> b()
        2
        >>> b()
        3

    Parameters:
        seed:       Something that can seed a `BaseDeviate`: an integer seed or another
                    `BaseDeviate`.  Using 0 means to generate a seed from the system.
                    [default: None]
        N:          The number of 'coin flips' per trial. [default: 1; Must be > 0]
        p:          The probability of success per coin flip. [default: 0.5; Must be > 0]
    """
    def __init__(self, seed=None, N=1, p=0.5):
        self._rng_type = _galsim.BinomialDeviateImpl
        self._rng_args = (int(N), float(p))
        self.reset(seed)

    @property
    def n(self):
        """The number of 'coin flips'.
        """
        return self._rng_args[0]

    @property
    def p(self):
        """The probability of success per 'coin flip'.
        """
        return self._rng_args[1]

    def __call__(self):
        """Draw a new random number from the distribution.

        Returns a Binomial deviate with the given n and p.
        """
        return self._rng.generate1()

    def __repr__(self):
        return 'galsim.BinomialDeviate(seed=%r, N=%r, p=%r)'%(self._seed_repr(), self.n, self.p)
    def __str__(self):
        return 'galsim.BinomialDeviate(N=%r, p=%r)'%(self.n, self.p)


class PoissonDeviate(BaseDeviate):
    """Pseudo-random Poisson deviate with specified ``mean``.

    The input ``mean`` sets the mean and variance of the Poisson deviate.  An integer deviate with
    this distribution is returned after each call.
    See http://en.wikipedia.org/wiki/Poisson_distribution for more details.

    Successive calls to ``p()`` generate pseudo-random integer values distributed according to a
    Poisson distribution with the specified ``mean``::

        >>> p = galsim.PoissonDeviate(31415926, mean=100)
        >>> p()
        94
        >>> p()
        106

    Parameters:
        seed:       Something that can seed a `BaseDeviate`: an integer seed or another
                    `BaseDeviate`.  Using 0 means to generate a seed from the system.
                    [default: None]
        mean:       Mean of the distribution. [default: 1; Must be > 0]
    """
    def __init__(self, seed=None, mean=1.):
        if mean < 0:
            raise GalSimValueError("PoissonDeviate is only defined for mean >= 0.", mean)
        self._rng_type = _galsim.PoissonDeviateImpl
        self._rng_args = (float(mean),)
        self.reset(seed)

    @property
    def mean(self):
        """The mean of the distribution.
        """
        return self._rng_args[0]

    def __call__(self):
        """Draw a new random number from the distribution.

        Returns a Poisson deviate with the given mean.
        """
        return self._rng.generate1()

    def generate_from_expectation(self, array):
        """Generate many Poisson deviate values using the existing array values as the
        expectation value (aka mean) for each.
        """
        if np.any(array < 0):
            raise GalSimValueError("Expectation array may not have values < 0.", array)
        array_1d = np.ascontiguousarray(array.ravel(), dtype=float)
        #assert(array_1d.strides[0] == array_1d.itemsize)
        self._rng.generate_from_expectation(len(array_1d), array_1d.ctypes.data)
        if array_1d.data != array.data:
            # array_1d is not a view into the original array.  Need to copy back.
            np.copyto(array, array_1d.reshape(array.shape), casting='unsafe')

    def __repr__(self):
        return 'galsim.PoissonDeviate(seed=%r, mean=%r)'%(self._seed_repr(), self.mean)
    def __str__(self):
        return 'galsim.PoissonDeviate(mean=%r)'%(self.mean)


class WeibullDeviate(BaseDeviate):
    """Pseudo-random Weibull-distributed deviate for shape parameter ``a`` and scale parameter ``b``.

    The Weibull distribution is related to a number of other probability distributions; in
    particular, it interpolates between the exponential distribution (a=1) and the Rayleigh
    distribution (a=2).
    See http://en.wikipedia.org/wiki/Weibull_distribution (a=k and b=lambda in the notation adopted
    in the Wikipedia article) for more details.  The Weibull distribution is real valued and
    produces deviates >= 0.

    Successive calls to ``w()`` generate pseudo-random values distributed according to a Weibull
    distribution with the specified shape and scale parameters ``a`` and ``b``::

        >>> w = galsim.WeibullDeviate(31415926, a=1.3, b=4)
        >>> w()
        1.1038481241018219
        >>> w()
        2.957052966368049

    Parameters:
        seed:       Something that can seed a `BaseDeviate`: an integer seed or another
                    `BaseDeviate`.  Using 0 means to generate a seed from the system.
                    [default: None]
        a:          Shape parameter of the distribution. [default: 1; Must be > 0]
        b:          Scale parameter of the distribution. [default: 1; Must be > 0]
    """
    def __init__(self, seed=None, a=1., b=1.):
        self._rng_type = _galsim.WeibullDeviateImpl
        self._rng_args = (float(a), float(b))
        self.reset(seed)

    @property
    def a(self):
        """The shape parameter, a.
        """
        return self._rng_args[0]

    @property
    def b(self):
        """The scale parameter, b.
        """
        return self._rng_args[1]

    def __call__(self):
        """Draw a new random number from the distribution.

        Returns a Weibull-distributed deviate with the given shape parameters a and b.
        """
        return self._rng.generate1()

    def __repr__(self):
        return 'galsim.WeibullDeviate(seed=%r, a=%r, b=%r)'%(self._seed_repr(), self.a, self.b)
    def __str__(self):
        return 'galsim.WeibullDeviate(a=%r, b=%r)'%(self.a, self.b)


class GammaDeviate(BaseDeviate):
    """A Gamma-distributed deviate with shape parameter ``k`` and scale parameter ``theta``.
    See http://en.wikipedia.org/wiki/Gamma_distribution.
    (Note: we use the k, theta notation. If you prefer alpha, beta, use k=alpha, theta=1/beta.)
    The Gamma distribution is a real valued distribution producing deviates >= 0.

    Successive calls to ``g()`` generate pseudo-random values distributed according to a gamma
    distribution with the specified shape and scale parameters ``k`` and ``theta``::

        >>> gam = galsim.GammaDeviate(31415926, k=1, theta=2)
        >>> gam()
        0.37508882726316
        >>> gam()
        1.3504199388358704

    Parameters:
        seed:       Something that can seed a `BaseDeviate`: an integer seed or another
                    `BaseDeviate`.  Using 0 means to generate a seed from the system.
                    [default: None]
        k:          Shape parameter of the distribution. [default: 1; Must be > 0]
        theta:      Scale parameter of the distribution. [default: 1; Must be > 0]
    """
    def __init__(self, seed=None, k=1., theta=1.):
        self._rng_type = _galsim.GammaDeviateImpl
        self._rng_args = (float(k), float(theta))
        self.reset(seed)

    @property
    def k(self):
        """The shape parameter, k.
        """
        return self._rng_args[0]

    @property
    def theta(self):
        """The scale parameter, theta.
        """
        return self._rng_args[1]

    def __call__(self):
        """Draw a new random number from the distribution.

        Returns a Gamma-distributed deviate with the given k and theta.
        """
        return self._rng.generate1()

    def __repr__(self):
        return 'galsim.GammaDeviate(seed=%r, k=%r, theta=%r)'%(
                self._seed_repr(), self.k, self.theta)
    def __str__(self):
        return 'galsim.GammaDeviate(k=%r, theta=%r)'%(self.k, self.theta)


class Chi2Deviate(BaseDeviate):
    """Pseudo-random Chi^2-distributed deviate for degrees-of-freedom parameter ``n``.

    See http://en.wikipedia.org/wiki/Chi-squared_distribution (note that k=n in the notation
    adopted in the Boost.Random routine called by this class).  The Chi^2 distribution is a
    real-valued distribution producing deviates >= 0.

    Successive calls to ``chi2()`` generate pseudo-random values distributed according to a
    chi-square distribution with the specified degrees of freedom, ``n``::

        >>> chi2 = galsim.Chi2Deviate(31415926, n=7)
        >>> chi2()
        7.9182211987712385
        >>> chi2()
        6.644121724269535

    Parameters:
        seed:       Something that can seed a `BaseDeviate`: an integer seed or another
                    `BaseDeviate`.  Using 0 means to generate a seed from the system.
                    [default: None]
        n:          Number of degrees of freedom for the output distribution. [default: 1;
                    Must be > 0]
    """
    def __init__(self, seed=None, n=1.):
        self._rng_type = _galsim.Chi2DeviateImpl
        self._rng_args = (float(n),)
        self.reset(seed)

    @property
    def n(self):
        """The number of degrees of freedom.
        """
        return self._rng_args[0]

    def __call__(self):
        """Draw a new random number from the distribution.

        Returns a Chi2-distributed deviate with the given number of degrees of freedom.
        """
        return self._rng.generate1()

    def __repr__(self):
        return 'galsim.Chi2Deviate(seed=%r, n=%r)'%(self._seed_repr(), self.n)
    def __str__(self):
        return 'galsim.Chi2Deviate(n=%r)'%(self.n)


class DistDeviate(BaseDeviate):
    """A class to draw random numbers from a user-defined probability distribution.

    DistDeviate is a `BaseDeviate` class that can be used to draw from an arbitrary probability
    distribution.  The probability distribution passed to DistDeviate can be given one of three
    ways: as the name of a file containing a 2d ASCII array of x and P(x), as a `LookupTable`
    mapping x to P(x), or as a callable function.

    Once given a probability, DistDeviate creates a table of the cumulative probability and draws
    from it using a `UniformDeviate`.  The precision of its outputs can be controlled with the
    keyword ``npoints``, which sets the number of points DistDeviate creates for its internal table
    of CDF(x).  To prevent errors due to non-monotonicity, the interpolant for this internal table
    is always linear.

    Two keywords, ``x_min`` and ``x_max``, define the support of the function.  They must be passed
    if a callable function is given to DistDeviate, unless the function is a `LookupTable`, which
    has its own defined endpoints.  If a filename or `LookupTable` is passed to DistDeviate, the
    use of ``x_min`` or ``x_max`` will result in an error.

    If given a table in a file, DistDeviate will construct an interpolated `LookupTable` to obtain
    more finely gridded probabilities for generating the cumulative probability table.  The default
    ``interpolant`` is linear, but any interpolant understood by `LookupTable` may be used.  We
    caution against the use of splines because they can cause non-monotonic behavior.  Passing the
    ``interpolant`` keyword next to anything but a table in a file will result in an error.

    **Examples**:

    Some sample initialization calls::

        >>> d = galsim.DistDeviate(function=f, x_min=x_min, x_max=x_max)

    Initializes d to be a DistDeviate instance with a distribution given by the callable function
    ``f(x)`` from ``x=x_min`` to ``x=x_max`` and seeds the PRNG using current time::

        >>> d = galsim.DistDeviate(1062533, function=file_name, interpolant='floor')

    Initializes d to be a DistDeviate instance with a distribution given by the data in file
    ``file_name``, which must be a 2-column ASCII table, and seeds the PRNG using the integer
    seed 1062533. It generates probabilities from ``file_name`` using the interpolant 'floor'::

        >>> d = galsim.DistDeviate(rng, function=galsim.LookupTable(x,p))

    Initializes d to be a DistDeviate instance with a distribution given by P(x), defined as two
    arrays ``x`` and ``p`` which are used to make a callable `LookupTable`, and links the
    DistDeviate PRNG to the already-existing random number generator ``rng``.

    Successive calls to ``d()`` generate pseudo-random values with the given probability
    distribution::

        >>> d = galsim.DistDeviate(31415926, function=lambda x: 1-abs(x), x_min=-1, x_max=1)
        >>> d()
        -0.4151921102709466
        >>> d()
        -0.00909781188974034

    Parameters:
        seed:           Something that can seed a `BaseDeviate`: an integer seed or another
                        `BaseDeviate`.  Using 0 means to generate a seed from the system.
                        [default: None]
        function:       A callable function giving a probability distribution or the name of a
                        file containing a probability distribution as a 2-column ASCII table.
                        [required]
        x_min:          The minimum desired return value (required for non-`LookupTable`
                        callable functions; will raise an error if not passed in that case, or if
                        passed in any other case) [default: None]
        x_max:          The maximum desired return value (required for non-`LookupTable`
                        callable functions; will raise an error if not passed in that case, or if
                        passed in any other case) [default: None]
        interpolant:    Type of interpolation used for interpolating a file (causes an error if
                        passed alongside a callable function).  Options are given in the
                        documentation for `LookupTable`. [default: 'linear']
        npoints:        Number of points DistDeviate should create for its internal interpolation
                        tables. [default: 256, unless the function is a non-log `LookupTable`, in
                        which case it uses the table's x values]
    """
    def __init__(self, seed=None, function=None, x_min=None,
                 x_max=None, interpolant=None, npoints=None):
        from .table import LookupTable
        from . import utilities
        from . import integ

        # Set up the PRNG
        self._rng_type = _galsim.UniformDeviateImpl
        self._rng_args = ()
        self.reset(seed)

        # Basic input checking and setups
        if function is None:
            raise TypeError('You must pass a function to DistDeviate!')

        self._interpolant = interpolant
        self._npoints = npoints
        self._xmin = x_min
        self._xmax = x_max

        # Figure out if a string is a filename or something we should be using in an eval call
        if isinstance(function, str):
            self.__function = function # Save the inputs to be used in repr
            import os.path
            if os.path.isfile(function):
                if interpolant is None:
                    interpolant='linear'
                if x_min or x_max:
                    raise GalSimIncompatibleValuesError(
                        "Cannot pass x_min or x_max with a filename argument",
                        function=function, x_min=x_min, x_max=x_max)
                function = LookupTable.from_file(function, interpolant=interpolant)
                x_min = function.x_min
                x_max = function.x_max
            else:
                try:
                    function = utilities.math_eval('lambda x : ' + function)
                    if x_min is not None: # is not None in case x_min=0.
                        function(x_min)
                    else:
                        # Somebody would be silly to pass a string for evaluation without x_min,
                        # but we'd like to throw reasonable errors in that case anyway
                        function(0.6) # A value unlikely to be a singular point of a function
                except Exception as e:
                    raise GalSimValueError(
                        "String function must either be a valid filename or something that "
                        "can eval to a function of x.\n"
                        "Caught error: {0}".format(e), self.__function)
        else:
            # Check that the function is actually a function
            if not hasattr(function, '__call__'):
                raise TypeError('function must be a callable function or a string')
            if interpolant:
                raise GalSimIncompatibleValuesError(
                    "Cannot provide an interpolant with a callable function argument",
                    interpolant=interpolant, function=function)
            if isinstance(function, LookupTable):
                if x_min or x_max:
                    raise GalSimIncompatibleValuesError(
                        "Cannot provide x_min or x_max with a LookupTable function",
                        function=function, x_min=x_min, x_max=x_max)
                x_min = function.x_min
                x_max = function.x_max
            else:
                if x_min is None or x_max is None:
                    raise GalSimIncompatibleValuesError(
                        "Must provide x_min and x_max when function argument is a regular "
                        "python callable function",
                        function=function, x_min=x_min, x_max=x_max)

            self.__function = weakref.ref(function) # Save the inputs to be used in repr

        # Compute the probability distribution function, pdf(x)
        if (npoints is None and isinstance(function, LookupTable) and
            not function.x_log and not function.f_log):
            xarray = np.array(function.x, dtype=float)
            pdf = np.array(function.f, dtype=float)
            # Set up pdf, so cumsum basically does a cumulative trapz integral
            # On Python 3.4, doing pdf[1:] += pdf[:-1] the last value gets messed up.
            # Writing it this way works.  (Maybe slightly slower though, so if we stop
            # supporting python 3.4, consider switching to the += version.)
            pdf[1:] = pdf[1:] + pdf[:-1]
            pdf[1:] *= np.diff(xarray)
            pdf[0] = 0.
        else:
            if npoints is None: npoints = 256
            xarray = x_min+(1.*x_max-x_min)/(npoints-1)*np.array(range(npoints),float)
            # Integrate over the range of x in case the function is doing something weird here.
            pdf = [0.] + [integ.int1d(function, xarray[i], xarray[i+1])
                          for i in range(npoints - 1)]
            pdf = np.array(pdf)

        # Check that the probability is nonnegative
        if not np.all(pdf >= 0.):
            raise GalSimValueError('Negative probability found in DistDeviate.',function)

        # Compute the cumulative distribution function = int(pdf(x),x)
        cdf = np.cumsum(pdf)

        # Quietly renormalize the probability if it wasn't already normalized
        totalprobability = cdf[-1]
        cdf /= totalprobability

        self._inverse_cdf = LookupTable(cdf, xarray, interpolant='linear')
        self.x_min = x_min
        self.x_max = x_max

    def val(self, p):
        r"""
        Return the value :math:`x` of the input function to `DistDeviate` such that ``p`` =
        :math:`F(x)`, where :math:`F` is the cumulattive probability distribution function:

        .. math::

            F(x) = \int_{-\infty}^x \mathrm{pdf}(t) dt

        This function is typically called by `__call__`, which generates a random p
        between 0 and 1 and calls ``self.val(p)``.

        Parameters:
            p:      The desired cumulative probabilty p.

        Returns:
            the corresponding x such that :math:`p = F(x)`.
        """
        if p<0 or p>1:
            raise GalSimRangeError('Invalid cumulative probability for DistDeviate', p, 0., 1.)
        return self._inverse_cdf(p)

    def __call__(self):
        """Draw a new random number from the distribution.
        """
        return self._inverse_cdf(self._rng.generate1())

    def generate(self, array):
        """Generate many pseudo-random values, filling in the values of a numpy array.
        """
        p = np.empty_like(array)
        BaseDeviate.generate(self, p)  # Fill with unform deviate values
        np.copyto(array, self._inverse_cdf(p)) # Convert from p -> x

    def add_generate(self, array):
        """Generate many pseudo-random values, adding them to the values of a numpy array.
        """
        p = np.empty_like(array)
        BaseDeviate.generate(self, p)
        array += self._inverse_cdf(p)

    @property
    def _function(self):
        return  self.__function if isinstance(self.__function, str) else self.__function()

    def __repr__(self):
        return ('galsim.DistDeviate(seed=%r, function=%r, x_min=%r, x_max=%r, interpolant=%r, '
                'npoints=%r)')%(self._seed_repr(), self._function, self._xmin, self._xmax,
                                self._interpolant, self._npoints)
    def __str__(self):
        return 'galsim.DistDeviate(function="%s", x_min=%s, x_max=%s, interpolant=%s, npoints=%s)'%(
                self._function, self._xmin, self._xmax, self._interpolant, self._npoints)

    def __eq__(self, other):
        return (self is other or
                (isinstance(other, DistDeviate) and
                 self.serialize() == other.serialize() and
                 self._function == other._function and
                 self._xmin == other._xmin and
                 self._xmax == other._xmax and
                 self._interpolant == other._interpolant and
                 self._npoints == other._npoints))

    # Functions aren't picklable, so for pickling, we reinitialize the DistDeviate using the
    # original function parameter, which may be a string or a file name.
    def __getinitargs__(self):
        return (self.serialize(), self._function, self._xmin, self._xmax,
                self._interpolant, self._npoints)


def permute(rng, *args):
    """Randomly permute one or more lists.

    If more than one list is given, then all lists will have the same random permutation
    applied to it.

    Parameters:
        rng:    The random number generator to use. (This will be converted to a `UniformDeviate`.)
        args:   Any number of lists to be permuted.
    """
    from .random import UniformDeviate
    ud = UniformDeviate(rng)
    if len(args) == 0:
        raise TypeError("permute called with no lists to permute")

    # We use an algorithm called the Knuth shuffle, which is based on the Fisher-Yates shuffle.
    # See http://en.wikipedia.org/wiki/Fisher-Yates_shuffle for more information.
    n = len(args[0])
    for i in range(n-1,1,-1):
        j = int((i+1) * ud())
        if j == i+1: j = i  # I'm not sure if this is possible, but just in case...
        for lst in args:
            lst[i], lst[j] = lst[j], lst[i]
