# Copyright (c) 2012-2019 by the GalSim developers team on GitHub
# https://github.com/GalSim-developers
#
# This file is part of GalSim: The modular galaxy image simulation toolkit.
# https://github.com/GalSim-developers/GalSim
#
# GalSim is free software: redistribution and use in source and binary forms,
# with or without modification, are permitted provided that the following
# conditions are met:
#
# 1. Redistributions of source code must retain the above copyright notice, this
#    list of conditions, and the disclaimer given in the accompanying LICENSE
#    file.
# 2. Redistributions in binary form must reproduce the above copyright notice,
#    this list of conditions, and the disclaimer given in the documentation
#    and/or other materials provided with the distribution.
#

import numpy as np
import math

from . import _galsim
from .gsobject import GSObject
from .gsparams import GSParams
from .utilities import lazy_property, doc_inherit
from .position import PositionD
from .errors import GalSimIncompatibleValuesError, convert_cpp_errors


class Kolmogorov(GSObject):
    r"""A class describing a Kolmogorov surface brightness profile, which represents a long
    exposure atmospheric PSF.

    The Kolmogorov profile is defined in Fourier space.  Its transfer function is:

    .. math::
        T(k) \sim \exp(-D(k)/2)

    where

    .. math::
        D(k) = 6.8839 \left(\frac{\lambda k}{2\pi r_0} \right)^{5/3},

    :math:`\lambda` is the wavelength of the light (say in the middle of the bandpass you are
    using), and :math:`r_0` is the Fried parameter.  Typical values for the Fried parameter are on
    the order of 0.1 m for most observatories and up to 0.2 m for excellent sites. The values are
    usually quoted at :math:`\lambda` = 500nm and :math:`r_0` depends on wavelength as
    :math:`r_0 \sim \lambda^{6/5}`.

    For more information, refer to

        http://en.wikipedia.org/wiki/Atmospheric_seeing#The_Kolmogorov_model_of_turbulence

    The Kolmogorov profile is normally defined in terms of the ratio :math:`\lambda / r_0`.
    The natural units for this ratio is radians, which is not normally a convenient unit to use for
    other `GSObject` dimensions.  Assuming that the other sky coordinates you are using are all in
    arcsec (e.g. the pixel scale when you draw the image, the size of the galaxy, etc.), then you
    should convert this to arcsec as well::

        >>> lam = 700  # nm
        >>> r0 = 0.15 * (lam/500)**1.2  # meters
        >>> lam_over_r0 = (lam * 1.e-9) / r0  # radians
        >>> lam_over_r0 *= 206265  # Convert to arcsec
        >>> psf = galsim.Kolmogorov(lam_over_r0)

    To make this process a bit simpler, we recommend instead providing the wavelength and Fried
    parameter separately using the parameters ``lam`` (in nm) and either ``r0`` or ``r0_500``
    (in m).  GalSim will then convert this to any of the normal kinds of angular units using the
    ``scale_unit`` parameter::

        >>> psf = galsim.Kolmogorov(lam=lam, r0=r0, scale_unit=galsim.arcsec)

    or::

        >>> psf = galsim.Kolmogorov(lam=lam, r0_500=0.15, scale_unit=galsim.arcsec)

    When drawing images, the scale_unit should match the unit used for the pixel scale or the WCS.
    e.g. in this case, a pixel scale of 0.2 arcsec/pixel would be specified as ``pixel_scale=0.2``.

    A Kolmogorov object may also be initialized using ``fwhm`` or ``half_light_radius``.  Exactly
    one of these four ways to define the size is required.

    The FWHM of the Kolmogorov PSF is :math:`\sim 0.976 \lambda/r_0` arcsec.
    (e.g., Racine 1996, PASP 699, 108).

    Parameters:
        lam_over_r0:        The parameter that governs the scale size of the profile.
                            See above for details about calculating it. [One of ``lam_over_r0``,
                            ``fwhm``, ``half_light_radius``, or ``lam`` (along with either ``r0`` or
                            ``r0_500``) is required.]
        fwhm:               The full-width-half-max of the profile.  Typically given in arcsec.
                            [One of ``lam_over_r0``, ``fwhm``, ``half_light_radius``, or ``lam``
                            (along with either ``r0`` or ``r0_500``) is required.]
        half_light_radius:  The half-light radius of the profile.  Typically given in arcsec.
                            [One of ``lam_over_r0``, ``fwhm``, ``half_light_radius``, or ``lam``
                            (along with either ``r0`` or ``r0_500``) is required.]
        lam:                Lambda (wavelength) in units of nanometers.  Must be supplied with
                            either ``r0`` or ``r0_500``, and in this case, image scales (``scale``)
                            should be specified in units of ``scale_unit``.
        r0:                 The Fried parameter in units of meters.  Must be supplied with ``lam``,
                            and in this case, image scales (``scale``) should be specified in units
                            of ``scale_unit``.
        r0_500:             The Fried parameter in units of meters at 500 nm.  The Fried parameter
                            at the given wavelength, ``lam``, will be computed using the standard
                            relation r0 = r0_500 * (lam/500)**1.2.
        flux:               The flux (in photons/cm^2/s) of the profile. [default: 1]
        scale_unit:         Units to use for the sky coordinates when calculating lam/r0 if these
                            are supplied separately.  Note that the results of using properties
                            like `fwhm` will be returned in units of ``scale_unit`` as well.  Should
                            be either a `galsim.AngleUnit` or a string that can be used to construct
                            one (e.g., 'arcsec', 'radians', etc.).  [default: galsim.arcsec]
        gsparams:           An optional `GSParams` argument. [default: None]

    In addition to the usual `GSObject` methods, Kolmogorov has the following access properties:

    Attributes:
        lam_over_r0:        The input ratio lambda / r0
        fwhm:               The full-width half-max size
        half_light_radius:  The half-light radius
    """
    _req_params = {}
    _opt_params = { "flux" : float, "r0" : float, "r0_500" : float, "scale_unit" : str }
    # Note that this is not quite right; it's true that exactly one of these 4 should be supplied,
    # but if lam is supplied then r0 is required.  Errors in which parameters are used may be
    # caught either by config or by the python code itself, depending on the particular error.
    _single_params = [ { "lam_over_r0" : float, "fwhm" : float, "half_light_radius" : float,
                         "lam" : float } ]
    _takes_rng = False

    # The FWHM of the Kolmogorov PSF is ~0.976 lambda/r0 (e.g., Racine 1996, PASP 699, 108).
    # In SBKolmogorov.cpp we refine this factor to 0.975865
    _fwhm_factor = 0.975865
    # Similarly, SBKolmogorov calculates the relation between lambda/r0 and half-light radius
    _hlr_factor = 0.554811

    # This constant comes from the standard form of the Kolmogorov spectrum from
    # from Racine, 1996 PASP, 108, 699 (who in turn is quoting Fried, 1966, JOSA, 56, 1372):
    # T(k) = exp(-1/2 D(k))
    # D(k) = 6.8839 (lambda/r0 k/2Pi)^(5/3)
    #
    # We convert this into T(k) = exp(-(k/k0)^5/3) for efficiency,
    # which implies 1/2 6.8839 (lambda/r0 / 2Pi)^5/3 = (1/k0)^5/3
    # k0 * lambda/r0 = 2Pi * (6.8839 / 2)^-3/5 = 2.992934
    _k0_factor = 2.992934

    # The value in real space at (x,y) = (0,0) is analytic:
    # int( flux (k/2pi) exp(-(k/k0)**(5/3)), k=0..inf)
    # = flux * k0^2 * (3/5) Gamma(6/5) / 2pi
    _xzero = 0.08767865636723461

    _has_hard_edges = False
    _is_axisymmetric = True
    _is_analytic_x = True
    _is_analytic_k = True

    def __init__(self, lam_over_r0=None, fwhm=None, half_light_radius=None, lam=None, r0=None,
                 r0_500=None, flux=1., scale_unit=None, gsparams=None):

        from .angle import arcsec, radians, AngleUnit

        self._flux = float(flux)
        self._gsparams = GSParams.check(gsparams)

        if fwhm is not None :
            if any(item is not None for item in (lam_over_r0, lam, r0, r0_500, half_light_radius)):
                raise GalSimIncompatibleValuesError(
                    "Only one of lam_over_r0, fwhm, half_light_radius, or lam (with r0 or r0_500) "
                    "may be specified",
                    fwhm=fwhm, lam_over_r0=lam_over_r0, lam=lam, r0=r0, r0_500=r0_500,
                    half_light_radius=half_light_radius)
            self._lor0 = float(fwhm) / Kolmogorov._fwhm_factor
        elif half_light_radius is not None:
            if any(item is not None for item in (lam_over_r0, lam, r0, r0_500)):
                raise GalSimIncompatibleValuesError(
                    "Only one of lam_over_r0, fwhm, half_light_radius, or lam (with r0 or r0_500) "
                    "may be specified",
                    fwhm=fwhm, lam_over_r0=lam_over_r0, lam=lam, r0=r0, r0_500=r0_500,
                    half_light_radius=half_light_radius)
            self._lor0 = float(half_light_radius) / Kolmogorov._hlr_factor
        elif lam_over_r0 is not None:
            if any(item is not None for item in (lam, r0, r0_500)):
                raise GalSimIncompatibleValuesError(
                    "Cannot specify lam, r0 or r0_500 in conjunction with lam_over_r0.",
                    lam_over_r0=lam_over_r0, lam=lam, r0=r0, r0_500=r0_500)
            self._lor0 = float(lam_over_r0)
        else:
            if lam is None or (r0 is None and r0_500 is None):
                raise GalSimIncompatibleValuesError(
                    "One of lam_over_r0, fwhm, half_light_radius, or lam (with r0 or r0_500) "
                    "must be specified",
                    fwhm=fwhm, lam_over_r0=lam_over_r0, lam=lam, r0=r0, r0_500=r0_500,
                    half_light_radius=half_light_radius)
            # In this case we're going to use scale_unit, so parse it in case of string input:
            if scale_unit is None:
                scale_unit = arcsec
            elif isinstance(scale_unit, str):
                scale_unit = AngleUnit.from_name(scale_unit)
            if r0 is None:
                r0 = r0_500 * (lam/500.)**1.2
            self._lor0 = (1.e-9*float(lam)/float(r0))*(radians/scale_unit)

        self._k0 = Kolmogorov._k0_factor / self._lor0

    @lazy_property
    def _sbp(self):
        with convert_cpp_errors():
            return _galsim.SBKolmogorov(self._lor0, self._flux, self.gsparams._gsp)

    @property
    def lam_over_r0(self):
        """The input lambda / r0 for this `Kolmogorov` profile.
        """
        return self._lor0

    @property
    def fwhm(self):
        """The FWHM of this `Kolmogorov` profile.
        """
        return self._lor0 * Kolmogorov._fwhm_factor

    @property
    def half_light_radius(self):
        """The half light radius of this `Kolmogorov` profile.
        """
        return self._lor0 * Kolmogorov._hlr_factor

    def __eq__(self, other):
        return (self is other or
                (isinstance(other, Kolmogorov) and
                 self.lam_over_r0 == other.lam_over_r0 and
                 self.flux == other.flux and
                 self.gsparams == other.gsparams))

    def __hash__(self):
        return hash(("galsim.Kolmogorov", self.lam_over_r0, self.flux, self.gsparams))

    def __repr__(self):
        return 'galsim.Kolmogorov(lam_over_r0=%r, flux=%r, gsparams=%r)'%(
            self.lam_over_r0, self.flux, self.gsparams)

    def __str__(self):
        s = 'galsim.Kolmogorov(lam_over_r0=%s'%self.lam_over_r0
        if self.flux != 1.0:
            s += ', flux=%s'%self.flux
        s += ')'
        return s

    def __getstate__(self):
        d = self.__dict__.copy()
        d.pop('_sbp',None)
        return d

    def __setstate__(self, d):
        self.__dict__ = d

    @property
    def _maxk(self):
        # exp(-k^(5/3)) = kvalue_accuracy
        return (-math.log(self.gsparams.kvalue_accuracy)) ** 0.6 * self._k0

    @property
    def _stepk(self):
        return self._sbp.stepK()

    @property
    def _max_sb(self):
        return self._flux * self._k0**2 * Kolmogorov._xzero

    @doc_inherit
    def _xValue(self, pos):
        return self._sbp.xValue(pos._p)

    @doc_inherit
    def _kValue(self, kpos):
        return self._sbp.kValue(kpos._p)

    @doc_inherit
    def _drawReal(self, image):
        self._sbp.draw(image._image, image.scale)

    @doc_inherit
    def _shoot(self, photons, rng):
        self._sbp.shoot(photons._pa, rng._rng)

    @doc_inherit
    def _drawKImage(self, image):
        self._sbp.drawK(image._image, image.scale)

    @doc_inherit
    def withFlux(self, flux):
        return Kolmogorov(lam_over_r0=self.lam_over_r0, flux=flux, gsparams=self.gsparams)
